We will carry out the Gram-Schmidt process on a basis for \(\rr^3\) where we will use the standard dot product in \(\rr^3\text{.}\) Consider the set \(\mcb = \{\bfv_1, \bfv_2, \bfv_3 \}\text{,}\) where
\begin{equation*}
\bfv_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \hspace{6pt}
\bfv_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \hspace{6pt}
\bfv_3 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}\text{.}
\end{equation*}
It is easily checked that \(\mcb\) is a basis for \(\rr^3\text{.}\) Now \(\vnorm{\bfv_1} = \sqrt{2}\text{,}\) so we have
\begin{equation*}
\bfe_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}\text{.}
\end{equation*}
We need \(\bfv_2 \cdot \bfe_1 = \frac{2}{\sqrt{2}}\) for the next calculation:
\begin{equation*}
\bfe_2' = \bfv_2 - (\bfv_2 \cdot \bfe_1)\bfe_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}\text{.}
\end{equation*}
Since \(\vnorm{\bfe_2'} = \sqrt{3}\text{,}\) we have
\begin{equation*}
\bfe_2 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\[6pt] \frac{1}{\sqrt{3}} \\[6pt] -\frac{1}{\sqrt{3}} \end{bmatrix}\text{.}
\end{equation*}
Finally, we will calculate \(\bfe_3'\) and \(\bfe_3\text{.}\) We need these two dot product calculations first:
\begin{equation*}
\bfv_3 \cdot \bfe_1 = -\frac{2}{\sqrt{2}}, \hspace{6pt}
\bfv_3 \cdot \bfe_2 = \frac{1}{\sqrt{3}}\text{.}
\end{equation*}
Then we have
\begin{align*}
\bfe_3' \amp = \bfv_3 - (\bfv_3 \cdot \bfe_1)\bfe_1 - (\bfv_3 \cdot \bfe_2)\bfe_2\\
\amp = \begin{bmatrix} -1 \\[6pt] 1 \\[6pt] -1 \end{bmatrix} + \begin{bmatrix} 1 \\[6pt] 0 \\[6pt] 1 \end{bmatrix} - \begin{bmatrix} \frac{1}{3} \\[6pt] \frac{1}{3} \\[6pt] -\frac{1}{3} \end{bmatrix}\\
\amp = \begin{bmatrix} -\frac{1}{3} \\[6pt] \frac{2}{3} \\[6pt] \frac{1}{3} \end{bmatrix}\text{.}
\end{align*}
Since \(\vnorm{\bfe_3'} = \frac{\sqrt{6}}{3}\text{,}\) we have
\begin{equation*}
\bfe_3 = \frac{3}{\sqrt{6}} \bfe_3' = \begin{bmatrix} -\frac{1}{\sqrt{6}} \\[6pt] \frac{2}{\sqrt{6}} \\[6pt] \frac{1}{\sqrt{6}} \end{bmatrix}\text{.}
\end{equation*}
The set \(\{ \bfe_1, \bfe_2, \bfe_3 \}\) is an orthonormal basis of \(\rr^3\text{.}\)