We will calculate the determinant of the following matrix:
\begin{equation*}
A = \begin{bmatrix}
3 \amp 1 \amp 0 \amp -1 \\
-2 \amp -1 \amp 2 \amp 4 \\
1 \amp 3 \amp 0 \amp -3 \\
2 \amp -2 \amp 0 \amp 0
\end{bmatrix} \text{.}
\end{equation*}
Since the third column of \(A\) has three zeros, we will expand along that column:
\begin{equation*}
\det(A) = \sum_{i=1}^4 a_{i3}C_{i3} = 2 \cdot C_{23}\text{.}
\end{equation*}
Just for this example, we will rename \(A_{23} = B\text{,}\) so \(\det(A) = -2\det(B)\text{.}\) Here is \(B\text{:}\)
\begin{equation*}
B = \begin{bmatrix}
3 \amp 1 \amp -1 \\
1 \amp 3 \amp -3 \\
2 \amp -2 \amp 0
\end{bmatrix}\text{.}
\end{equation*}
We will take advantage of the zero in the \((3,3)\)-entry of \(B\) by expanding along the third row to calculate \(\det(B)\text{:}\)
\begin{align*}
\det(B) \amp = (-1)^{3+1} (2) \begin{vmatrix} 1 \amp -1 \\ 3 \amp -3 \end{vmatrix} + (-1)^{3+2}(-2)
\begin{vmatrix} 3 \amp -1 \\ 1 \amp -3 \end{vmatrix}\\
\amp = 2 (0) + 2(-8) = -16\text{.}
\end{align*}
Since we determined that \(\det(A) = -2\det(B)\text{,}\) this means that \(\det(A) = 32\text{.}\)