We consider the following matrix \(A\text{:}\)
\begin{equation*}
A = \begin{bmatrix}
4.5 \amp -2.5 \amp -2.5 \\
2.5 \amp -0.5 \amp -2.5 \\
5 \amp -5 \amp -3
\end{bmatrix}\text{.}
\end{equation*}
Let \(T \in L(\rr^3)\) be multiplication by \(A\text{.}\) If we know that \(\lambda = 2\) is an eigenvalue for \(A\text{,}\) we can calculate a basis for \(\mathrm{eig}_2(T)\text{.}\)
We need to form the matrix \(A - 2I\) and then find the RREF:
\begin{equation*}
A-2I = \begin{bmatrix}
2.5 \amp -2.5 \amp -2.5 \\
2.5 \amp -2.5 \amp -2.5 \\
5 \amp -5 \amp -5
\end{bmatrix} \sim \begin{bmatrix}
1 \amp -1 \amp -1 \\
0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0
\end{bmatrix}\text{.}
\end{equation*}
The presence of free variables here confirms that \(2\) is an eigenvalue of \(A\text{.}\) If \(\bfx \in \nll(A-2I)\text{,}\) then
\begin{equation*}
\bfx = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
= \begin{bmatrix} x_2 + x_3 \\ x_2 \\ x_3 \end{bmatrix}
= x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}\text{.}
\end{equation*}
From this calculation we can see that \(\mathrm{eig}_2(T)\) is two-dimensional, with basis \(\mcb = \{\bfv_1, \bfv_2 \}\text{,}\) where
\begin{equation*}
\bfv_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \hspace{6pt} \text{and} \hspace{6pt}
\bfv_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}\text{.}
\end{equation*}