Let \(A \in M_2(\rr)\) be the following matrix:
\begin{equation*}
A = \begin{bmatrix} 2 \amp -2 \\ 2 \amp 7 \end{bmatrix}\text{.}
\end{equation*}
A scalar \(\lambda\) is an eigenvalue for \(A\) if and only if \(\det(A - \lambda I) = 0\text{.}\) Since \(A - \lambda I\) is \(2\times 2\text{,}\) we can find the determinant with ease:
\begin{equation*}
\det (A - \lambda I) = \begin{vmatrix} 2-\lambda \amp -2 \\ 2 \amp 7-\lambda \end{vmatrix} = (2-\lambda)(7-\lambda) + 4\text{.}
\end{equation*}
With some algebra, we can see that
\begin{equation*}
\det(A - \lambda I) = \lambda^2 - 9\lambda + 18 = (\lambda - 6)(\lambda - 3)\text{.}
\end{equation*}
Since \(\lambda\) is an eigenvalue when \(\det(A - \lambda I)=0\text{,}\) we see that the eigenvalues of \(A\) are \(\lambda = 6\) and \(\lambda = 3\text{.}\)
Letβs verify this method by showing that \(\lambda=6\) and \(\lambda=3\) are eigenvalues for \(A\) and finding bases for their eigenspaces. First, if \(\lambda = 6\text{,}\) then
\begin{equation*}
A - 6 I = \begin{bmatrix} -4 \amp -2 \\ 2 \amp 1 \end{bmatrix} \sim
\begin{bmatrix} 1 \amp \frac{1}{2} \\ 0 \amp 0 \end{bmatrix}\text{.}
\end{equation*}
From this we see that \(\mathrm{eig}_6(A)\) is one-dimensional with basis \(\left\{ \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}\text{.}\)
Now, when \(\lambda = 3\text{,}\) we have
\begin{equation*}
A - 3 I = \begin{bmatrix} -1 \amp -2 \\ 2 \amp 4 \end{bmatrix} \sim
\begin{bmatrix} 1 \amp 2 \\ 0 \amp 0 \end{bmatrix}\text{.}
\end{equation*}
Thus \(\mathrm{eig}_3(A)\) is also one-dimensional with basis \(\left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}\text{.}\)