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To Students and Instructors

This book was first written for Washington & Jefferson College (W&J) stu-
dents. At W&J, we teach Linear Algebra not only for its content but also
(a) as a second course-length exposure to mathematical writing, and (b) as an
introduction to the abstract and axiomatic thinking that is characteristic of
higher mathematics. This initial audience and purpose has shaped this book
irrevocably.

As a text to be used in a second writing course, we have not included explicit
writing instruction in the text. While training in logic and proof techniques
is assumed from the beginning, we take care to identify proof strategies being
used in these pages—especially in the early chapters. Along these lines, in
most sections we have identified exercises as writing exercises which students
should prioritize (and which instructors should seriously consider requiring).

The fact that this text is written to introduce students to abstract concepts
has influenced the choice and order of content. We introduce fields before
vector spaces, and we introduce both structures earlier than many other texts.
Theorems are then stated for general fields (instead of just for R or C) through-
out the text until the topic requires a restriction—such as inner products in
Chapter 7. To emphasize that not all fields should be thought of as R, finite
fields, the complex numbers, and other fields show up explicitly as examples.
(Readers should note that care must be taken when using calculators/software/
online aids to row-reduce matrices over fields which are not R. Some pointers
are provided in Section 2.2.)

Other Features of this Book. FEach section of this book contains Reading
Questions. ldeally, instructors will assign and students will complete these
questions before the class period in which material from that section of the
book will be covered. The main goals of these questions is to force students
to actually read the text and to guide a somewhat thoughtful first exposure to
the content. We have found it helpful to emphasize to students that we do not
expect them to fully understand the material upon this first reading, but that
multiple exposures are often needed for comprehension and it is helpful if the
classroom exposure is the second encounter, not the first. (If the instructor can
skim the answers to these reading questions before class, then in-class examples
and explanations can be tailored to best help the students.)

We have designated some problems at the end of each section as Writing
Ezercises. These are collected to help students practice and develop their writ-
ing. Some of these might be good to discuss in groups during class, and some
might make useful homework exercises. As mentioned above, the separation of
these problems is driven by one of the original purposes of this text—to help
students improve their mathematical writing.

Many of the problems at the end of the sections have answers or solutions

iv



included in Appendix B. Readers will notice that not all problems have answers
or solutions written out—some of this incompleteness is due to the fact that
this book is still a work in progress, some is because we required students to
turn in written solutions to specific problems and did not want those solutions
staring our students in the face.

Finally, a word on the title. Virtually every Linear Algebra text is titled,
Linear Algebra. That’s fine; textbook titles are not, perhaps, where an author’s
greatest skill and creativity are deployed. The subtitle of this book was chosen
with the metaphor of a handyman in mind. Such a worker needs to acquire
some tools and improve their skill in using others. Additional implements
may need sharpening or other maintenance. Linear algebra is used widely
in mathematics, and for a book pitched at intermediate-level undergraduate
students of mathematics, this metaphor seemed appropriate. Plus, a good
acronym which sounds somewhat French (LAGAST!) is hard to resist.
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Chapter 1

Solving Systems of Linear Equa-
tions

Linear Algebra is a remarkable area of mathematics. It is wide, deep, and has
a huge variety of applications. One of the greatest parts of the subject is that
it takes very little in terms of prerequisites to reap great rewards!

While the abstraction in this book begins in earnest in Chapter 2, readers
will find this first chapter imminently practical and full of calculations. At
the heart of this chapter is an algorithm to solve systems of linear equations.
Though it might seem easy to some students, it is important to understand
this chapter before moving on, as it serves as an essential foundation to what
follows.

1.1 Systems of Linear Equations
We will introduce the first set of big ideas in this book with an example.

Example 1.1.1 Alex reaches into his pocket and pulls out a handful of coins.
He tells us that he’s holding 90 cents in his hand, consisting of only nickels
(worth five cents each) and quarters (worth 25 cents each). How many coins of
each type is Alex holding?

We can model this information with a linear equation. Let = be the number
of nickels in Alex’s hand, and let y be the number of quarters. The equation
that captures the information Alex shared is

52 4 25y = 90. (1.1)

In this case, we don’t have enough information to answer Alex’s question.
It could be that Alex is holding three nickels and three quarters (154 75 = 90)
or that he is holding 13 nickels and one quarter (654 25 = 90). There are quite
a few solutions to equation (1.1). (Note that in this example, since it would
not make sense to have only part of a coin, we need our values of z and y to
be non-negative integers.)

Now imagine that Alex gives us additional information by telling us that he
is holding exactly ten coins. We can put this information into a second linear
equation, and we now have what is called a system of equations. We need
to know what values of = and y satisfy the following equations simultaneously:

o5z + 25y = 90
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z+y=10.

A small amount of work shows us that the values x = 8 and y = 2 satisfy
these equations simultaneously. (Though you may have been able to produce
those numbers yourself, don’t worry right now about where those numbers came
from. We’ll get there soon.) This means that Alex is holding eight nickels and
two quarters. (]

The first major task of Linear Algebra is to learn how to handle systems of
linear equations like the one given in Example 1.1.1. We will learn a method
to analyze such systems and determine their solutions (if they have solutions).
We need a number of definitions as we get started.

Note 1.1.2 We will use the symbol R to denote the set of all real numbers. At
the beginning of our work, we will be using R as our set of numbers for almost
everything. However, when we get to Section 2.1, we will move away from R to
a more general description of a set of numbers that “works” for solving linear
equations.

Definition 1.1.3 A linear equation in the variables x1, ..., x, is one which
can be written in the form

a1y + -+ apty, = b,

where the a; and b are constants. The numbers aq,...,a,,b all come from R.
In the special situation where b = 0, this is called a homogeneous linear
equation. (Note that when there are only two variables in view we may use
x and y instead of x1 and zs; similarly, when there are only three variables
present, we may use x, y, and z.) O

The word “linear” in the phrase “linear equation” should make us think of
a single power of a variable. In a linear equation, therefore, we will have no
terms involving z7, sin(xs), rox3, \/Z4, or anything other than a single power
of a variable.

Example 1.1.4 The following are linear equations:
dx + 2y = 98, —2x1 — 69 + bz =0, 14z, — 1523 = —7.

These are all linear equations because every appearance of a variable term in
these equations contains only a single variable raised to the first power.
The following are not linear equations:

422 —y =09, In(x1) + 322 = 2, 129 — tan(xz) = 0.

These are not linear equations because each equation has at least one variable
term with something other than a single variable to a single power. O

Definition 1.1.5 A system of linear equations is a collection of one or
more equations involving the same variables. (We sometimes shorten this and
refer to a linear system.) When all of these linear equations are homogeneous
linear equations, this may be called a homogeneous linear system. %

Example 1.1.6 Here is a system of linear equations involving the variables
T1, Lo, T3, and xy4:
21 — x3 + 8x4 = 10
—x1 + 3£E2 — 61’4 = —4.

Note that not all variables need to be present in each equation. When a variable
is missing, we consider that variable to have a zero coefficient in that equation.
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It may be convenient (and preferred) to align the terms with the same variables
vertically, but when an equation lacks one of the variables this creates a blank
horizontal space. O

Definition 1.1.7 A solution to a system of linear equations in n variables is
a list of n numbers, (c1,...,¢,), such that when the corresponding variables
are assigned these numeric values (plug ¢; in everywhere for xy, plug ¢y in
everywhere for x9, and so on), all the equations are true statements. The set
of all solutions is called the solution set of the linear system. Two linear
systems are said to be equivalent if their solution sets are equal. %
The language of solution sets and equivalent linear systems may seem un-
necessarily complex. However, the method (see Algorithm 1.3.9) for solving a
linear system is much easier to describe with these terms firmly in hand.

Example 1.1.8 Consider the following linear system:

20 +y=—1
T — 3y =1T.

A solution to this system is (2, —5). (We use this notation to mean x = 2 and
y = —5.) We verify this claim by plugging these numbers in for the variables
and checking that both equations turn out to be true. (In fact, this is the only
solution to this system.) O

The fact that we can write down a system of linear equations does not mean
that it has a solution. Many linear systems have no solution at all. Others
have one or an infinite number of solutions. This can be illustrated by some
examples of lines graphed in the familiar setting of R2.

Example 1.1.9 We first consider the linear system consisting of two simple
equations where the solution to each equation is a line in R2:

20+y =5

—zrz+y=-1
Readers will likely realize that the solution to this system happens when the
graphs of these lines intersect. We see from the graph below that the intersec-

tion occurs at the point (2,1). Since this is the only intersection point, there
is only one solution to this system.

Figure 1.1.10

We now consider a second linear system:

20 +y=>5
20 +y = 3.

The graphs of these two lines appear below, but in this case the lines do not
intersect at all because they are parallel. (The slope of both lines is —2.)
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Figure 1.1.11

Here is a third linear system in two variables:

2x4+y=>5
6x + 3y = 15.

Each of these equations has a solution set whose graph is a line. In this
particular case, we obtain the same line for both equations, which means that
the linear system has an infinite number of solutions. Each one of the infinite
solutions to the first equation is a solution to the second equation, and vice
versa.

Figure 1.1.12

|
What we saw in Example 1.1.9 is no accident. This simple collection of
examples in R? exposes our need for the following definitions.

Definition 1.1.13 A system of linear equations is consistent if it has at least
one solution. A system is inconsistent if it has no solutions. When a linear
system has only one solution we say that the solution is unique. O

This definition and the principle illustrated in Example 1.1.9 mean that
whenever we encounter a system of linear equations we have two questions to
ask. Is this system consistent? If the system is consistent, is the solution
unique?

Reading Questions

1. This question is designed to help you understand linear equations.

(a) Write down an example of a linear equation involving the variables
x, y, and z.

(b) Write down an example of an equation involving the variables z, y,
and z which is not linear.
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2. Find the solution set to the following linear system:

3r+Ty=9
—2x + 6y = —2.

Exercises

1. Carlos has ten coins totalling $1.10. Each coin is either a nickel, a dime,
or a quarter. He has twice as many nickels as he has quarters. How many
of each coin does Carlos have?

Model this problem with a linear system. (You do not need to find the
solution set of this linear system.)

2. Suppose that f(z) = ax®+bx+cis a function whose graph passes through

the points (—1,6), (1,0), and (3, —2). What are the values of a, b, and ¢?

Model this problem with a linear system. (You do not need to find the
solution set of this linear system.)

3. For each part, determine whether the equations form a linear system.
(a)

3y—4dz+ax =2
242w+ Txr =14

3
2x—10y—|—;:16
Tr + 12z = -1

r—e'z=9
In(8)z 4+ 13y = —3
4. Determine whether or not each given list is a solution to this linear system.
xr1 — 2582 + 81’3 =-5
—x1 4+ 322 — 1023 = 6
2x1 — 3xo + 143 = —9.
(a) (777 37 1)
(b) (757 07 0)
(c) (=
(d) (57 733 72)

5. Determine whether or not each given list is a solution to this linear system.

4,4,1)

r—y+3z=-6
=3z +4y — 10z = 22
—2z 4+ 4y — 8z = 21.

(a) (17 1, _2)
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6.

(b) (727 33 4)
(c) (0,3,-1)

For the following linear systems, graph the solution set of each equation.
Then graph the solution set of the linear system.

(a)

—2x+y=-3
r—5y="17
(b)
20 -2y =5
3r+y=-2
—r—y=1
()
20 — 3y = -2
—2x+3y=-3
(d)
20 —4y = —1
—x+2y:%
(¢)
r+4y =5
3r—y=0
—2x — 8y =—10

Writing Exercises

7.

For each of the following, write an example of a 2 X 2 linear system with the
given property. (The system must be one you’ve not yet seen!) Explain
why your example has the property.

(a) The system has no solutions.
(b) The system has exactly one solution.

(¢) The system has infinitely many solutions.
Consider an m x n linear system and suppose that (ci,...,c,) and

(di,...,d,) are both solutions to this system. Under what conditions
is (¢c1 +di,...,cn +dy) also a solution to the same system? Explain.

Consider an m X n linear system and suppose that (ci,...,c,) and
(dy,...,dy) are both solutions to this system. Let ¢ be a real number.
Prove that (tcy + (1 — t)dy, ..., tc, + (1 — t)d,) is also a solution to this
same linear system.
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1.2 Matrices

In this section we will introduce matrices, one of the main computational tools
in linear algebra. We will learn how to translate the information about a
linear system to a matrix and then manipulate that matrix to solve the original
system.

Some of the matrix manipulations later in this section may seem to come
from nowhere. We intend this first example to motivate these upcoming oper-
ations.

Example 1.2.1 Consider the following system of two linear equations in two
variables:

3z 4+ 3y =-3
20 —y =1.
We first multiply both sides of the top equation by % in order to get “easier”
coefficients on our variables. After taking this action, we have the following
equivalent linear system:

r+y=-1
20—y ="17.

We can now use the first equation to eliminate one of the variables in the
second equation. If we add —2 times the first equation to the second equation,
we’ll only have the y variable left. The second equation is transformed, resulting
in this equivalent linear system:

z+y=-1 (1.2)
-3y =9.

We can now multiply both sides of Equation (1.3) by —% to find that y = —3.
Plugging this value in for y in Equation (1.2) quickly gives us = 2. We have
solved the linear system at this point, and we have determined that the only
solution to the system is (2, —3). (Readers should check that this is in fact a
solution by plugging these values into the original linear equations.) ]

Example 1.2.1 is much longer than it needs to be, and at this point some
readers may wonder what they’ve gotten themselves into—the mathematics
so far (such as it is) is far from advanced. The real point of this example is
to make explicit the operations used to solve a simple linear system. Once
we have better notation and terminology, solving linear systems will be much
faster (especially with the aid of technology). This is where matrices come in
so handy.

Definition 1.2.2 A matrix is a rectangular array of numbers. If m and n are
natural numbers, then an m X n matrix is one with m rows and n columns. The
entries in a matrix are referred to by their row and column numbers, so entry
(,7) is the number in the ith row and jth column. (Row numbers increase
from the top of the matrix down, and column numbers increase from the left
of the matrix to the right.)

The main diagonal of a matrix refers to those entries on the (i, ¢)-diagonal
of the matrix—starting at the upper left and going down to the right. In other
words, an entry is on the main diagonal if and only if its row and column
numbers are the same.
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A submatrix of a matrix refers to the matrix that remains after removing
one or more rows and/or columns from a matrix. %

Every system of linear equations generates two important matrices—the
coefficient matrix and the augmented matrix.

Definition 1.2.3 Given a system of m linear equations in n variables (hereafter,
we will call this an m x n linear system),

1121+ -+ a1nTy = b1

Am1%1 + -+ A @p = bma
the coefficient matrix of the system is

aixr - Qlin

Am1 ** OGmn
and the augmented matrix of the system is

aixr - Qin b1

am1  *°° Omn bm

We form the augmented matrix by “augmenting” the coefficient matrix with
the column of constants. O

Note that the number of equations in the linear system corresponds to
the number of rows of both the coefficient and augmented matrices, and the
number of variables in the linear system corresponds to the number of columns
in the coefficient matrix. (The augmented matrix of a linear system has one
more column than the number of variables.)

Example 1.2.4 For the linear system

201 — Txg +x3 = —8
—T1 —+ 41’3 = 72,

the coefficient and augmented matrices are, respectively,

2 -7 1 q 2 -7 1] -8
1 0 4 an 1 0 4| -2

Note the 0 in position (2,2) as it corresponds to the absence of an x5 term in
the second equation of the linear system. (|

We must get comfortable switching between linear systems and their asso-
ciated matrices. In particular, we need to understand why specific forms of
matrices are especially useful when solving linear systems.

Example 1.2.5 Consider the following matrix as the augmented matrix for a
linear system:

0 7
0| -2
1 2

10
0 1
0 0 2

In one sense, this is the best possible augmented matrix we could have for a
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3x 3 linear system, because the solutions to the system are obvious. Translating
2

this matrix back to equation form gives us x =7, y = =2, and z = 3. (]

Almost no linear systems will come to us with an augmented matrix as
simple as the one in Example 1.2.5. (This is mostly because such a linear
system is, well, boring. It takes no work to solve a system like this.) Our goal,
however, is to take any given linear system and manipulate its augmented
matrix to be as close to this sort of matrix as we can get.

As we work with augmented matrices, we are restricted in the arithmetic
we perform on them because, most of all, we want to preserve the solution sets
of the corresponding linear systems. In our next definition, we describe the

three “legal” ways we have to manipulate a matrix in this fashion.

Definition 1.2.6 The following operations on a matrix are called elementary
row operations.

1. Add a multiple of one row to another row, replacing that second row with
the result. (We will call this the replace row operation.)

2. Multiply every entry in a row by a nonzero constant. (We will call this
the scale row operation.)

3. Switch the location of any two rows in the matrix. (We will call this the
switch row operation.)

Two matrices are called row equivalent if there is a sequence of elementary
row operations that transforms one matrix into the other. %

When defining “row equivalent” in the previous definition, careful readers
will note one implied fact that must be checked. The word “equivalent” brings
to mind an equivalence relation, which includes the property of the relation
being symmetric. Therefore, the definition implies that all of the elementary
row operations are “reversible”—that is, for each elementary row operation,
there is an elementary row operation that reverses the change that was just
made. This is something to prove! (See Exercise 1.2.9.)

Theorem 1.2.7 Suppose that A and B are augmented matrices corresponding
to systems of linear equations. Then if A and B are row equivalent, the linear
systems to which they correspond are also equivalent.

Proof. We will prove this statement directly. Because elementary row opera-
tions only involve one or two rows of a matrix at a time, it is sufficient to prove
this theorem for systems of two linear equations.

We suppose that we have the following 2 x n linear system:

1121 + - - 1Ty = by

a21%1 + -+ - AapTy = by,

which produces the following augmented matrix:

A= aipz A | b )
azi -+ Ggn | be
Further, we suppose that (c1,...,¢,) is a solution to the linear system. If we
apply the switch row operation to A, this corresponds to writing the second
equation above the first in the linear system. It is immediate that (cq,...,cp)

is still a solution to this system.
If we apply the scale row operation to A, multiplying row 1 (without loss of
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generality) by a nonzero constant d, then we have the matrix

dby
by |-

B = da11 s daln

a21 crr A2n

We must show that (c1, ..., ¢,) is a solution to the corresponding linear system.
It is obvious that (¢1,. .., c,) satisfies the second equation in this new linear sys-
tem since that equation is unchanged. If (cy, .. ., ¢, ) satisfied the first equation
of the original system, then

aiic1 + -+ aipcy, = by.

We can now show that (ci,...,c,) satisfies the first equation of the second
system by substitution:

dayici + - +dainc, = d(anci + -+ aincn)
= d(by).

We must now show that the replace row operation preserves solutions. We
let k be a nonzero constant and we replace (without loss of generality) the
second row of A with the old second row plus k times the first row. Here is the
resulting matrix C:

C = a11 ce Q1n by }
(ka1 +az1) -+ (kain +azn) | (kb1 +02)|"

In the linear system which corresponds to C, the first equation is unchanged
from the first equation in the linear system that corresponds to A, so we only
need to be concerned with the second equation. By virtue of the fact that
(c1,...,cp) satisfied both equations of the first system, we know that

a1i1c1 + -+ a1pcy = bl

and
a1 + - + agncy = bo.

We can now use this in the following calculation:

(ka1 + az1)er + -+ - + (kain + azn)cn
= (kaj1c1 + -+ kaincn) + (ag1c1 + -+ - + azncy)
=k(aiic1 + -+ + aincn) + (ag1¢1 + - -+ + agpcn)
= kb, + bo.

There is technically one more collection of facts to verify before this proof is
complete. We have shown that, for all three elementary row operations, if
(c1,...,¢n) is a solution to the linear system corresponding to A then it will
also be a solution to the linear system corresponding to B (where B is the
result of applying one elementary row operation to A). But “equivalent” linear
systems means that the solution sets are equal as sets. This means that we
must assume we have a solution for the linear system corresponding to the
matrix B and show that it is a solution for the linear system corresponding
to A. We claim that this concern can be dispensed with by invoking another
result in this section. Connecting the last dots of this proof is left to the reader
in Exercise 1.2.12. |

Roughly speaking, we want to use elementary row operations to transform
the augmented matrix for a linear system into a matrix which has 1s along the
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main diagonal and Os as the other entries in those columns. This is not always
possible, and we will describe the situation more precisely below, but here is
an example to illustrate the process.

Example 1.2.8 We start by considering the following matrix as the augmented
matrix of a linear system:

2 2 —-1| 8
-3 -2 2 | -12
) 0 4 11

We first scale the first row by 3 to produce a 1 in the (1,1) entry:

1 1 -1 4
-3 -2 2 |-12
5 0 4|11

We then replace the second row with the sum of the second row and three times
the first row:

1
11 —1|4

1
01 Lo
5 0 4 |11

We will again use the 1 in the (1,1) entry to “eliminate” the 5 in the (3,1)
entry. We replace the third row with —5 times the first row plus the third:

1 1 - 4

o1 110
0 -5 £ ]-9

Now that we have “cleared out” the entries under the (1,1) entry, we can do
the same for the 1 in the (2, 2) entry. (In future examples we may need to scale
first to have a 1 here.) We replace the third row with 5 times the second row
plus the third:

11 -1 4
01 3]0
00 9 | —9]
We can now scale the third row by % to produce 1s along the main diagonal:
1 1 1| 4]
01 3]0
0 0 1 | —1]

We are halfway done, as we have 0s below the main diagonal. We now need
to use elementary row operations to produce Os above the main diagonal. We
first replace the second row with f% times the third plus the second:
1
11 —5| 4
1

01 0 5

00 1 |-1
We can again use the 1 in the (3, 3) position to produce a 0 in the (1, 3) position.
We replace the first row with % times the third row plus the first:

= o O
[ CIEN

1
0
0

O = =
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Finally, we use the 1 in the (2,2) entry to produce a 0 in the (1,2) entry. We
replace the first row with —1 times the second row plus the first:

=

1 00
0 1 0
0 0 1]-1

We now have the matrix in the form we wanted, because we can read off the
solution: =z =3, y = %, and z = —1. O

We will now define and standardize this form of the augmented matrix that
is so helpful in solving the related linear system. In what follows, by “nonzero
row (column)” we mean a row (column) with at least one nonzero entry, and
by the “leading entry” of a row we mean the row’s leftmost nonzero entry.

Definition 1.2.9 A matrix A is in row-echelon form (REF) if all of the
following hold:

e all rows of all zeros are collected at the bottom of the matrix;

o each leading entry of a row is in a column to the right of the column of
the leading entry for the row above it; and

o all entries in a column below a leading entry are zeros.

If a matrix A is in row-echelon form and also satisfies the following two condi-
tions, it is in reduced row-echelon form (RREF):

e each leading entry in a nonzero row is 1; and
e each leading 1 is the only nonzero entry in its column.

O
Though that definition is a mouthful, it is useful. Here is an example
showing some matrices that do and do not meet these criteria.

Example 1.2.10 The following two matrices are in REF but not RREF:

2 -1 3 0

0 5 -3 7 -4 9 6
00 2 -1 {0 12 —10}
00 0 0

The following two matrices are in RREF:

104 5
01 2 -3 {1_702]
000 0

Neither of the following matrices are in REF or RREF:

0 2 5 -8 2 3 -2 5
o -1 7 7 0 -1 3 6
4 2 1 O -4 -3 0 12

O

Definition 1.2.11 When a matrix A is in row-echelon form, then the leading
entry in each row is called a pivot. The location of this entry within the matrix
is called a pivot position. Finally, any column containing a pivot is called a
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pivot column. O

One of the reasons we have Definition 1.2.9 is because (we will prove this
below) every matrix can be put into RREF. What follows here is a description
of the algorithm used to transform every matrix into RREF. This process is
usually called “Gaussian elimination” or “Gauss-Jordan elimination.”

Algorithm 1.2.12 The Row Reduction Algorithm. This row reduction
algorithm consists of five steps. The first four (collectively) produce a matriz in
row-echelon form; after the fifth step the matriz will be in reduced row-echelon
form.

1. Start with the leftmost nonzero column. This will be a pivot column with
the pivot position at the top.

2. Select a nonzero entry in this column and use the switch operation to
move it to the top of the column (if necessary).

3. Use elementary row operations to create zeros below this pivot.

4. Ignore the row with the pivot just considered. Apply steps 1-3 to the
submatriz that remains. Repeat this process until all nonzero rows have
been handled.

5. Select the rightmost pivot and use the scale operation to make it a 1. Now
use elementary row operations to create 0s above this pivot. Move upward
and to the left, repeating this process for all remaining pivots.

Example 1.2.13 We consider the following matrix A and put it into reduced

row-echelon form:
-2 -2 6 14| 4

A= 2 3 -4 -4 -1
-3 -5 4 =22

The first column is nonzero, and we will leave the current top row in its
place. Though it is not necessary to create a 1 in the pivot position at this point
in the process, it is often useful to do so. (We are not violating Algorithm 1.2.12
by producing a leading 1 this early in the process, but this is a step of row
reduction that many, including this author, prefer to perform now to make
future steps less painful.) We multiply the first row by —% to achieve this:

1 1 -3 -7| -2
2 3 -4 -4 -1
-3 =5 4 -2]-=2

We now use the 1 in the (1, 1) position to create zeros in the column below
it. We add —2 times row 1 to row 2 and we add 3 times row 1 to row 3. Since
there is no “interaction” between these operations, we will perform them at the
same time, though the reader should certainly take one operation at a time if
this combination raises one’s blood pressure:

1 1 -3 -7 ]-2
0 1 2 10 3
0 -2 -5 —-23| -8

According to the algorithm, we now ignore row 1 and repeat the process
for the remaining matrix. There is already a 1 at the “top” of (this portion
of) the second column, so we use that entry to create zeros below it. We add
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twice the second row to the third row:

11 -3 —-7|-2
01 2 10| 3
0 0 -1 -3|-2

The matrix is in row-echelon form now, so we proceed to step 5 of the
algorithm. We multiply the third row by —1 to produce a 1 in the (3,3)
position:

1 1 -3 —-7|-2
01 2 10| 3
00 1 3 2

We now use the 1 we just created in order to produce zeros in the column
above it. We add —2 times the third row to the second, and we add 3 times
the third row to the first:

11 0 2| 4
01 0 4|-1
00 1 3| 2

The final step is to use the pivot in position (2,2) in order to create a 0
above it. We add —1 times the second row to the first:

100 —2|5
010 4 |-1]. (1.4)
001 32

The process is now complete, so the matrix in (1.4) is the result of reducing
A to RREF. |

We note that this example is different from Example 1.2.8 in an important
way. The matrix in Example 1.2.13 corresponds to a system with three equa-
tions and four variables, while the matrix in Example 1.2.8 corresponds to a
system with three equations and three variables. We only mention this to point
out that the size of the original matrix puts some restrictions on the possibili-
ties for its RREF, and the reader should be aware of this when completing the
reading questions and the exercises at the end of this section.

Reading Questions

1. Write down the coefficient matrix and the augmented matrix for the fol-
lowing linear system:

2x1 — 310 + %xj =7
—bxro 4+ 123 —11 = —4
6xo + 921 = —1.
2. Although the reduced row-echelon form of a matrix is unique (we will

prove this soon), the row-echelon form of a matrix is not unique. For the
following matrix A, write two distinct row-echelon forms:

2 —3|4
S ERT]

3. Put the following matrix into reduced row-echelon form. Record each of
your steps along the way (both the elementary row operations you used
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and the matrices you obtained as a result):

2 -3| 5
A=|-1 2 |4
5 -9 8

Exercises

1. Write the augmented matrix that corresponds to the following linear sys-
tem:

2x9 — 4x1 + \/5564 =38
3r3 — 1929 = —1
0.524 — 323 + 21 = 0.

2. Write the linear system that corresponds to the following matrix, assuming
this is the augmented matrix of the system:

1 0 -3)| 4
0 -2 1 |-5
0 0 O 0

3.  For each of the following, describe the elementary row operation that was
used to transform the matrix on the left into the matrix on the right. Be
specific in your description of the operation. (You should not just answer
“scale” or “switch”, etc.)

2 1 -3 1 -3
(a) |[-1 4 5| — |1 5 2
-2 0 2 -2 0 2
[2 1 -3] [—1 4 5]
M |-1 4 5| —|2 1 -3
-2 0 2 -2 0 2
[2 1 -3] [2 1 -3]
() |[-1 4 5| — |-1 5
-2 0 2| -1 1]

For each of the following matrices, determine if the matrix is in row-
echelon form, reduced row-echelon form, both, or neither.

2
(a) |0
0
0
(b) |0
0
1
() |0
K
@ |1

0
1

1
0
1




CHAPTER 1. SOLVING SYSTEMS OF LINEAR EQUATIONS 16

5. Consider the following matrix A:

-2 3
A= )
Find two distinct matrices B and C' which are row equivalent to A and
are in row echelon form. (There are many correct answers!)

6. Use Algorithm 1.2.12 to put each of these matrices into RREF.

(-3 4
@ [ 2}
(2 4 5
(b) -1 3 —4]
4 8 8
(¢c) 4 -1 -8
0o 8 -7
-3 -8 -1
(d) |-4 -3 -3
2 13 -1

7. For each of the following matrix sizes, list all of the possible RREFs for
matrices of that size. Use the symbols B for a pivot, * for an unspecified
number, and 0 for a zero entry.

(a) 2x2
(b) 2x3
(c) 3x2

Writing Exercises

8.

(a) Suppose A is a 3 x 4 matrix. What is the maximum number of
pivots in any RREF of A7 Explain.

(b) Suppose B is a 6 x 4 matrix. What is the minimum number of rows
of zeros in any RREF of B? Explain.

9. Prove that each of the elementary row operations is reversible. In other
words, if an elementary row operation was used to transform a matrix A
into a matrix B, prove that there is another elementary row operation (of
the same type) which will transform B back into A.

10. Recall that an equivalence relation is reflexive, symmetric, and transitive.
Now, fix the integers m and n and consider row equivalence as a relation
on all m x n matrices. Prove that this is an equivalence relation. (Hint:
another exercise in this section may be helpful in your argument.)

11. Prove or disprove: The following two matrices are row equivalent. (Hint:
another exercise in this section may be helpful in your argument.)

9 -9 -10 0 3 -2
A=1|-1 -1 9 B=|7 -2 1
-5 -2 -1 7 6 =8



CHAPTER 1. SOLVING SYSTEMS OF LINEAR EQUATIONS 17

12. Complete the proof of Theorem 1.2.7. This can be accomplished by prov-
ing the statement in the final paragraph of the given proof.

1.3 Results

In the previous section, we learned how to write the augmented matrix of a
linear system and Algorithm 1.2.12 provided a process to reduce any matrix to
RREF. In this section, we will learn how to use the RREF of a matrix to solve
the corresponding linear system. We will also prove some important results
related to these solutions.

We first introduce some terminology. These terms relate what we saw in
Definition 1.2.11 back to the corresponding linear systems.

Definition 1.3.1 Suppose that A is the coefficient matrix corresponding to a
system of linear equations and that A is in REF. Then a variable corresponding
to a pivot column in A is called a basic variable (or pivot variable), and a
variable corresponding to a non-pivot column in A is called a free variable.

O

Note 1.3.2 Note that in this definition A is the coefficient matriz (not the
augmented matrix) of the linear system. We are using the coefficient matrix
because we are making a definition concerning variables, and the rightmost
column in the augmented matrix does not correspond to a variable in the
linear system.

The augmented matrix of an m x n linear system is of size m x (n + 1).
This puts some limitations on the different reduced row-echelon forms that
we could see in this context. In the following two examples, we will consider
specific reduced row-echelon forms and what they say about the linear systems
to which they correspond.

Example 1.3.3 Consider the following as the augmented matrix corresponding
to a system of linear equations:

1 0 3|0
A=10 1 210
0 0 0|1

This is a 3 X 4 matrix, so the original linear system has three equations and
three variables. Hopefully the reader can see that this matrix is indeed in
RREF. (Consult Definition 1.2.9 for a refresher.)

We will now write the equations which correspond to each row of the matrix,
and we will pay special attention to the final row:

x1 + 0z + 323 =0
0x1 + 29+ 223 =0
0(E1+0(E2+0(E3:1.

Usually we omit terms in linear equations when the coefficient is 0, but we are
including those terms here to make a point. When the coefficient of a variable
is 0, the entire linear term disappears since no value of the variable could make
the product with the coefficient anything other than 0. This means that each
of these equations can be written in a more simple form. In particular, the
third equation can be written as 0 = 1.

This may feel rather elementary, but there are no possible variable values to
make 0 = 1 a true statement. It is false all of the time. Since we are searching



CHAPTER 1. SOLVING SYSTEMS OF LINEAR EQUATIONS 18

for values of the variables which satisfy all the equations simultaneously, and
since one of the equations has no solution, the linear system has no solution.
This is an inconsistent linear system.

We proved in Theorem 1.2.7 that row-equivalent matrices correspond to
equivalent linear systems. Therefore, we can say that the original linear system
for this example is inconsistent. |

What we saw in Example 1.3.3 we will be able to generalize (see Theo-
rem 1.3.5) in our effort to categorize inconsistent linear systems. Before we do
that, let’s look at an augmented matrix which has a different RREF.

Example 1.3.4 Consider the following matrix as the augmented matrix of a
linear system:

1 0 =3|5
A=10 1 2|7
00 010

(Again, the reader should verify that this matrix is in reduced row-echelon
form.)

The final row of this matrix corresponds to the equation 0 = 0. Since this
equation is true all the time, for all values of the involved variables, we won’t
consider it any longer as it places no further restrictions on the solutions.

The first two rows of A correspond to the following two linear equations:

.131—3.’133:5
To + 223 =17.

From Definition 1.3.1, we see that in this system z; and x5 are basic vari-
ables and x5 is a free variable. What does that mean for the solutions of this
system? We call 3 “free” because any element of R that we put into x3 will
produce a solution for this system. The variable x3 is “free” to take on any
value, and then the values of the basic variables z; and x5 are determined by
that value and the linear equations.

For example, in this system of equations, if 3 = 2, then z; = 11 and
x9 = 3, giving (11, 3,2) as a solution to the linear system. If 3 = —1, then
z1 =2 and xo = 9, giving (2,9, —1) as a solution to the system. Since x3 can
take on any value in R, and since we have a solution to the system for each
value of x3, this means we have a solution to the system for each element of R.
We conclude that there are an infinite number of solutions to this system.

The solutions to this linear system can be written in a number of ways. We
will prefer the following form:

r1 =5+ 3x3
T = 7— 21‘3
3 is free.

This is called a parametric description of the solution set. Sometimes solu-
tions like this are written with the letter ¢ or s in place of z3 to better match
the usage of the word “parameter” elsewhere. We will follow the convention of
using the free variables as parameters in our solutions. (]

In Example 1.3.4, we saw that having a free variable corresponded to having
an infinite number of solutions. But we need to be careful about our conclu-
sions, because there was also a free variable (z3) in Example 1.3.3, and in that
case there were no solutions to the system. A free variable only indicates an
infinite number of solutions when the system is consistent.

The two previous examples, combined with Example 1.2.5, give us a sense
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of what solutions to linear systems can look like given certain characteristics of
the augmented matrices. We can now state in theorem form what we observed
to be true in these examples.

Theorem 1.3.5 Suppose A is the augmented matriz of a linear system, and
suppose that A is in reduced row-echelon form. Then the linear system is
consistent if and only if there is no pivot in the final column of A.

Proof. We note that the pivot columns do not change when a matrix goes from
row-echelon form to reduced row-echelon form (see Algorithm 1.2.12), so we
are not losing any generality with our assumption that A is in RREF.
This theorem is a biconditional statement, and we will prove one implication
directly. We assume there is no pivot in the final column of A. Then when we
consider the linear equations which correspond to the rows of A, we see that
each of the basic variables can be written in terms of the free variables, if any
free variables exist. If no free variables exist, then all basic variables have an
assigned value and the system is consistent. In the case that there is at least
one free variable, we can pick an element of R—Ilet’s say, 0—to assign to each
of the free variables. This produces a solution to the linear system, and our
system is consistent.
We will prove the contrapositive of the other implication. If there is a pivot
in the final column of A, then the corresponding linear equation reduces to
0 = 1. This means that there is no solution to the linear system, so the system
is inconsistent. |
Given that two major questions about the solutions to linear systems involve
consistency and uniqueness, the next natural theorem to consider is related to
this second concept.

Theorem 1.3.6 Suppose that A is the augmented matriz corresponding to a
consistent m X n linear system, and suppose that A is in reduced row-echelon
form. Then the system has a unique solution if and only if there is a pivot in
each of the first n columns of A.

Proof. As with the proof of Theorem 1.3.5, we are not losing any generality by
assuming that A is in RREF.

We first suppose that there is a pivot in each of the first n columns of A; this
implies that m > n. We also recall that the linear system is assumed to be
consistent, meaning that the first n rows of A have the following form:

10 -+ 0] b
01 -+ 0fb
00 -+ 1|0,

(The matrix A may have rows of all zeros below the n rows here, but that will
not affect our discussion.)

If the matrix A has the form we have just detailed, then the original linear
system is equivalent to one with equations of the form x; = by, 3 = bo, ...,
T, = b,. That is, the system has a unique solution.

We will prove the contrapositive of the other implication. We suppose that
there is at least one free variable (call it ;) in the linear system. We recall
(see Example 1.3.4) that when the matrix for a consistent system is in RREF, all
solutions can be written by expressing basic variables in terms of any existing
free variables. Therefore, this system has a solution in which all free variables
are set equal to 0. Further, this system has a solution in which all free variables
except x; are set equal to 0 and z; = 1. This may not change the value of any



CHAPTER 1. SOLVING SYSTEMS OF LINEAR EQUATIONS 20

of the basic variables, and there may not be any free variables aside from z;,
but these two solutions we have just described are not the same since x; has a
different value in each one. Therefore, this system has more than one solution,
meaning that the system does not have a unique solution. |

Corollary 1.3.7 If m and n are natural numbers and m < n, then an m X n
linear system cannot have a unique solution.

Proof. Suppose A is the augmented matrix corresponding to an m X n linear
system with m < m. The RREF of A can have at most m pivots, so by
Theorem 1.3.6 the system cannot have a unique solution. |

There are two natural definitions related to Corollary 1.3.7 which we now
state.

Definition 1.3.8 An m xn linear system is called underdetermined if m < n.
An m x n linear system is called overdetermined if m > n. O

The two previous theorems provide the last step to an algorithm for solving
any linear system.

Algorithm 1.3.9 Algorithm for Solving Linear Systems. Suppose that
we have an m X n system of linear equations. Here are the steps to solve the
system.

1. Form the augmented matriz of the linear system. We will call this matrix

A.

2. Find the reduced row-echelon form of A. (If A is small, this can be done
by hand; if A is not small, technology should be used to complete this

step.)

3. Determine whether or not the system is consistent by observing the loca-
tion of the pivots in the RREF of A. If there is a pivot in the rightmost
column, the linear system 1is inconsistent and we need not proceed any
further in the algorithm. If there is no pivot in the rightmost column, the
system is consistent.

4. Determine whether or not the system has a unique solution. If there
is a pivot in each of the first n columns, then the system has a unique
solution which can be recorded. If there is not a pivot in each of the first
n columns, then the system does not have a unique solution; in this case,
a parametric description of the solution set can be recorded.

The earlier examples in this section can be completed using this algorithm.

We will include an additional example so the reader can practice using the
algorithm once more.

Example 1.3.10 Consider the following linear system:
—Tx—4y+T72=-3
—2rx4+2y—4z=2
Sx+4y+ 2z =5.
Does this system have a solution? If the system has a solution, write down the

solution.

Solution. We follow Algorithm 1.3.9 and form the augmented matrix A for
this system. When we row reduce this matrix, we find

-7 -4 7 |3 1 0 0|-1/9
A=1-2 2 —4| 2|~ |0 1 0| 4/3
5 4 1 5 0 0 1] 2/9
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We will refer to the RREF of A as B. Since B has no pivot in the rightmost
column, our linear system is consistent. Secondly, since B has a pivot in each
of the first three columns, the solution to our linear system is unique. We
record this solution as x = —1/9, y = 4/3, and z = 2/9. O

The rest of this section will be devoted to proving Theorem 1.3.14, which
states that the RREF of a matrix is unique. (There are actually a couple of
places so far in this section where we have been a bit sloppy and referred to
the RREF of a matrix, but in each of these cases the uniqueness of the RREF
was not essential to the argument.)

We will begin with a lemma. (Our approach to proving Theorem 1.3.14
has been heavily influenced by Kuttler’s treatment?.)

Lemma 1.3.11 In a consistent m x n linear system, all solutions can be
expressed by writing the basic variables as linear functions of the free variables
(if they exist). Further, each basic variable x; can be wrilten as a linear function
of only those free variables x; with j > 1.

Proof. The first sentence in this lemma has essentially been proved in the
discussion within Example 1.3.4. We will prove the second statement directly.
We consider A as the augmented matrix of a consistent m X n linear system.
Suppose A is row equivalent to B, where B is in RREF. Recall that part of the
definition of RREF (Definition 1.2.9) is that pivots are the leftmost non-zero
number in their row.
Consider the linear equation corresponding to row d of B; this equation will
begin with a basic variable z; and will possibly involve other variables x;, with
J > 1, before the equals sign. However, all of these other variables x; will be
free variables, because any other basic variable xy, with k > ¢, will correspond
to a column in which that pivot is the only non-zero number. In other words,
all entries by, along row d in B which correspond to pivot columns k, for k > 1,
will be zero. ]
The basic idea for the proof of Theorem 1.3.14 is to prove the result for
homogeneous linear systems first and then to obtain the proof for general linear
systems as an extension. We turn to our first result about homogeneous linear
systems. (For a refresher on homogeneous systems, see Definition 1.1.5.)

Lemma 1.3.12 If x; is a basic variable of a homogeneous linear system, then
any solution of the system with x; = 0 for all free variables x; with j > 1, must
have x; = 0.

Proof. We will prove this directly. Suppose that x; is a basic variable of
a homogeneous linear system and that in a solution of this system, x; = 0
for all free variables x; with j > ¢. From Lemma 1.3.11 we know that in the
description of the solution to this system, x; will be written as a linear function
of the free variables with larger indices. But the nature of a homogeneous linear
system demands that such a linear function will involve only free variables and
no constants (the constants are all 0). Therefore, if 2; = 0 for all free variables
x; with j > ¢, we must have z; = 0 as well. |

We will now prove the uniqueness result for augmented matrices of homo-
geneous systems. (We should note here, perhaps, that while we introduced
the notions of REF and RREF for augmented matrices, the row reduction
algorithm can be applied to any matrix at all.)

Proposition 1.3.13 Let A be the augmented matriz corresponding to a homo-
geneous linear system. Suppose that A is row equivalent to matrices B and C,

’math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_
Algebra_(Kuttler)/


https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/01%3A_Systems_of_Equations/1.04%3A_Uniqueness_of_the_Reduced_Row-Echelon_Form

CHAPTER 1. SOLVING SYSTEMS OF LINEAR EQUATIONS 22

both of which are in reduced row-echelon form. Then B = C.

Proof. We proceed by contradiction and assume that B # C. Since B and
C' are row equivalent and both are in RREF, they must have the same pivot
positions. (The reader is asked to prove this in Exercise 1.3.16.) Since B # C,
these matrices must differ in some row, call it row k. Since B and C have the
same pivot positions, we assume there is a pivot in column 4 of row k in both
matrices. There must be some position j, with j > 4, such that by; # ci;. The
variable x; must not be a basic variable in the linear system, because if so, we
would have by; = cx; = 0. So z; is a free variable.

Homogeneous linear systems are always consistent. (The reader is asked to
prove this in Exercise 1.3.10.) There must exist a solution to the linear system
where z; = 1 and all other free variables take on the value of 0. In this solution,
using the linear equations that correspond to the rows in B, we solve and obtain
xz; = —by;. Using the linear equations that correspond to the rows in C, we
find x; = —ck;. Since a solution is completely determined by the values of the
free variables, this implies that by; = cy;, which is a contradiction. |

With this proposition in hand, we can state and prove our first large result.

Theorem 1.3.14 Let A be an m X n matriz and let A be row equivalent to
both B and C. If B and C are in reduced row-echelon form, then B = C.

Proof. We first form the matrix A’ by augmenting the matrix A with an
additional column on the right consisting of all zeros. We similarly form the
matrices B’ and C’ from B and C. We note that B’ and C’ are also in RREF
and they are obtained from A’ using the same row operations that reduced A
to B and C.

We can consider A’, B’, and C’ as augmented matrices corresponding to m x n
homogeneous linear systems. By Proposition 1.3.13, since A’ is row equivalent
to both B’ and C’, where both B’ and C’ are in RREF, we must have B’ = C".
By the construction of B’ and C’, this implies B = C. |

Reading Questions

1. Consider the following linear system:

4{E1 + 7%2 + 171’3 =23
—3I1 — 51‘2 — 12563 = —17

Determine which of the variables are basic variables and which are free
variables. Explain your answer.

2.  Consider the following linear system:

xr1 — 209 + 223 = —1
—T1 —+ 23]2 — T3 = -1
3r1 — 6x9 + Tx3 = —b.

Write a parametric description of the solution set of this system. (Follow
Example 1.3.4.)
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Exercises

1. In each of the following, suppose the augmented matrix for a linear system
has been reduced to the following RREF. Write down the solution(s) to
the system (if they exist).

1 0 0] -4
(a) |0 1 0] 5
0 0 1] 0
(1 -2 0] 2
) o 0o 1|-3
0 0 0] 0
[1 0 =310
(©) 1 5|0
00 01
1 0 2 -4 0| 7
@ lo19 -1 0|-4
000 0 14

2. Solve the following linear system.

20 —3y+5z=0
—x+2y—32=0
r+4y—42=0

3. Solve the following linear systems.
(a)

T—2y+3z2=4
S5 —6y+T7z=05

(b)
rT—2y+2z-—w=1
3xr—Ty—z+dw=2
()
2e—y+2z2=3
—r+3y+2z=1
3r+y+4z="7
(d)

4 — 2y = —4
20 + 5y + 62 =2
3r —y+ %z =0
4. Determine the values of a for which the following linear system has no
solutions, exactly one solution, or infinitely many solutions. Explain your
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answers.

r+2y+2z=—4
20 —2y+42 =7
r+2y—(a*—5)z=a+1
Under what conditions is the following linear system consistent? Your

answer should be an equation or equations that must be satisfied by the
b;. Explain your answer.

.’E+2y:b1
—2x — by + 3z = by
x4+ 4y — 6z = bs

Solve the following system for z, y, and z. (Hint: define new variables to
produce a linear system.) Explain your solution.

1 2 4
e
T Yy =z
2 2 4
242 _Z_—¢
T Yy =z
3 4 4
——+-+-=—4
T Yy =z

Answer the question posed in Exercise 1.1.1 by solving the linear system
that was created in that exercise.

Answer the question posed in Exercise 1.1.2 by solving the linear system
that was created in that exercise.

Suppose that the graph of the function f(x) = ax® + bax? + cx + d passes
through the points (—1,2), (—2,-9), (1,4), and (2,15). Determine the
values of a, b, ¢, and d.

Writing Exercises

10.
11.
12.

13.

14.

15.

Prove that every homogeneous linear system is consistent.

I do believe we need to replace or eliminate this exercise!

(a) Prove that if ad — be # 0, then the reduced row-echelon form of
a bl. (1 0
c dl "o 1]

(b) Use part (a) to prove that if ad — be # 0, then the linear system

axr+by=p
cx+dy=q

has exactly one solution.
Explain why every linear system over R has either no solutions, exactly
one solution, or an infinite number of solutions.
Suppose that a 3 x 4 coefficient matrix for a linear system has three pivot
columns. Is the system consistent? Explain.

What would you have to know about the pivot columns in an augmented
matrix in order to know that the linear system has exactly one solution?
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Explain.

16. Suppose that matrices A and B are row equivalent and both matrices are
in REF. Prove that A and B have the same pivot positions.

1.4 Vectors

Up to this point in the chapter, we have been concerned with solving systems
of linear equations, and we have used the tool of matrices to great effect. In
this section we will connect linear systems to some basic geometric concepts,
and this will result in alternate ways of writing linear systems which, at times,
will be more helpful.

1.4.1 The Basics of Vectors

Although we will shortly connect “vectors” to geometric notions, at the begin-
ning a vector will be strictly an algebraic object.

Definition 1.4.1 An n-dimensional vector over R is an ordered list of n real
numbers. We will adopt the convention that, unless stated otherwise, vectors
are column vectors written in this form:

where v; € R for all . (Column vectors are therefore matrices with a single
column.) The set of all n-dimensional vectors over R is denoted R™. O

Note 1.4.2 We say that two vectors u and v in R™ are equal if u; = v; for each
i =1,...,n. This means that an equation involving vectors in R™ captures the
same information as n equations involving real numbers.

As we have said, vectors should be thought of first as algebraic objects, and
there are several ways to combine these objects.

Definition 1.4.3 We can combine and modify vectors through addition and
a form of multiplication. We will describe the multiplication first.
Let v € R™ have the form

and let ¢ € R. Then the scalar multiple of v by c is the vector ¢v in R”
obtained by multiplying each entry of v by ¢; that is,

cup,

In this context, we will often refer to real numbers as scalars.
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If u and v are vectors in R™ with the form

Uy U1

U2 V2
u= | . and V= ,

Un Un

then the sum of u and v is the vector u + v in R™ obtained by adding the
corresponding entries in u and v. That is,

’U,1+’U1

U2+’U2
u+v=

Uy + Up

O

Note 1.4.4 We will use the notation 0 to denote the zero vector—that is,
the vector in R™ whose entries are all 0. We will also use the notation —u to
indicate the scalar multiple (—1)u.

We present some quick calculations in the following example.

Example 1.4.5 Let u € R? and let v,w € R3 such that

_3 2 —6
u= |, v=|1], w=|—-3
—4 3

Then we can calculate 2u and v + w using Definition 1.4.3:

-6 —4
2u = , v+w=|-2
10 1

|

When combining vectors, we are limited to adding vectors of the same

dimension—that is, vectors with the same number of entries. However, we

are not limited to either addition or scalar multiplication; we can certainly do

both at once. Nor are we limited to adding only two vectors at a time. The
following definition provides the correct generalization.

Definition 1.4.6 Let ci,co,..., ¢, be real numbers and let vq,vsy,...,v,, €
R™. Then the linear combination of the vectors vy, v, ..., v,, with weights
C1,C2,...,Cm IS

C1V] + CoVo + -+ + Cpy Vi -

The span of the vectors vi, va,...,V,, is the set of all possible linear combi-
nations of vi,vs,...,Vv,, and is written Span{vy,...,v,,}. In other words, the
span is defined to be

m
Span{vy,..., v, = {Zcivi |c1y. ., em € R}.
i=1

O

Example 1.4.7 Taking v and w from Example 1.4.5, we can calculate the
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linear combination of these vectors with weights 2 and —1:

4 6 10
2v—w= |2 |+ |3 | = 5
-8 -3 —11

O

Note 1.4.8 We have defined addition and scalar multiplication for vectors
here, but these concepts also make sense for matrices. We will set the stage
briefly here for a return in Section 2.3.

If we think of an m xn matrix A in terms of its columns, then the n columns
of A are all vectors in R™. For two m x n matrices A and B, we define the
sum A+ B in this way: column j of A+ B is the sum of the two vectors in R™
which are the jth columns of A and B. Similarly, if ¢ € R, then we can define
the scalar multiple cA in terms of its columns: column j of cA is the scalar
multiple of the jth column of A by c. In this way these algebraic notions for
matrices are built upon the corresponding notions for vectors.

We include two initial calculations as examples. If A and B are defined as

2 -1 0 -3 2 7
A[?) 4 —5]’ B[O —4 4}’
then we have
-1 1 7 —4 2 0
A+ B= {3 0 _1] and _QA_[—G _3 10].

We finally note that, as with vectors, the sum (and thus the linear combi-
nation) of two or more matrices only makes sense if all involved matrices are
of the same size.

Before we explore the concept of span, we need to discuss the connection
between systems of linear equations and vector equations. We saw a glimpse
of this connection in Note 1.4.2, and we will develop it further here.

Let us consider the following simple linear system:

3331 —8.732 =9

(1.5)
—2x1 4+ dxo = —1.

Solving this linear system involves (as always) investigating whether there are
values of z1 and zo which satisfy both of these equations simultaneously. We
will now arrive at this same question from a different angle.

Let’s consider the following three vectors in R%:

R

Since all of these vectors are in R?, we can ask this question: Can w be written
as a linear combination of u and v? (This question is equivalent to asking if w
belongs to Span{u,v}.) In other words, do there exist scalars x; and x2 such
that z1u + 2ov = w?

The equation in this final question is equivalent to other vector equations:

NOINERD
- 1
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3’1}1 — 81’2 o 9
—2.%1 + 51’2 =1
Because of Note 1.4.2, this last vector equation is equivalent to the linear

system in (1.5).

Example 1.4.9 Consider the following vectors in R3:

0 3 5
vi=| 2], vo = |—2]|, and vy = |—3
-1 4 1

Is v3 in Span{vy, va}?

We have written this question in terms of a vector equation, but by the
previous discussion we should be able to translate this question to a more
familiar one about solutions to linear systems and answer the question using
Algorithm 1.3.9.

The question about vectors is the same as asking if this linear system is
consistent:

31’2 =5
21‘1 - 21‘2 =-3
—x1 +4xe = 1.

The augmented matrix for this system is

0 3 5
2 =2 -3],
-1 4 1
and the RREF of this matrix is
1 0|0
0 11]0
0 01

Since there is a pivot in the final column of this matrix, we conclude (by
invoking Theorem 1.3.5) that the linear system is inconsistent. This means
that the answer to the original question is no, v is not in Span{vy,vy}. ]

Example 1.4.9 illustrates a general workflow for questions like this. There
is no need to explicitly write out the intermediate step involving linear sys-
tems; instead, we can form a matrix using the given vectors as the appropriate
columns, row reduce the matrix, and answer the question.

Combining vectors in R™ is already (or soon will be) fairly natural for
readers of this chapter. Under the operations of scalar multiplication and
addition, vectors in R™ have some useful properties, which we record in the
following fact. We will not spend time with these properties now, but we will
look at them intently in Section 2.3. These properties can all be verified using
the corresponding properties of addition and multiplication of real numbers.
(And the fact that real numbers have these properties is essential!)

Fact 1.4.10 For all vectors u, v, and w in R", and for all real numbers ¢ and
d, the following properties hold.

l.u+v=v+u

2. (u+v)+w=u+(v+w)
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. u+0=0+u=u
4.u+(—u)=(-u)+u=0
5. c(u+v)=cu+ecv

6. (c+du=cu+du

7. ¢(du) = (ed)u

8 lu=nu

Thinking about linear systems through the lens of vectors also brings some
structure to the solutions to consistent linear systems. When a linear system
is consistent and the solution is unique, we have recorded this in terms of the
variables involved. For example, we recorded the solution to the linear system
in Example 1.3.10 as ¢ = —1/9, y = 4/3, and z = 2/9. However, if we think
of these variables as forming a vector in R?, then we can record the solution
this way:

x -1/9
x=|y| =|4/3
z 2/9

Similarly, when a consistent system does not have a unique solution, we
can again use vector notation. (This would replace the parametric descrip-
tion of the solution set we presented in Example 1.3.4.) In Example 1.3.4 we
considered such a linear system. The solution set can now be written this way:

1 5+ 3z3 5 3
X= |x9| = |T—2x3| = |7| +2x3 |—2
I3 I3 0 1

If we label the vectors v and w as

5 3
v= (7| and w= [-2],
0 1

then all solutions to this system can be written as v + tw, where ¢ can be
any real number. As we learn more about the geometric interpretations of the
solutions to linear systems, this phrasing in terms of vectors will be useful.

1.4.2 Vectors and Geometry

Before we leave this chapter, we need to introduce the connection between
vectors and geometry. Readers who have taken multivariable calculus are likely
aware of some of these concepts. For the sake of simplicity, we will restrict most
of our discussion (and all of our illustrations) to R? in this section.

We will visualize a vector v = {Z} by identifying it with the point (a,b)
in the plane. We will draw an arrow from the origin to (a,b) to aid this
visualization. So, for example, the vectors u = [12] and v = [_13} would be

visualized in the following picture.
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Figure 1.4.11 Illustration of two vectors in the plane

Scalar multiplication of a vector can be seen as stretching or contracting
the vector, if the scalar is positive. If the scalar is negative, the vector will
be pointing in the opposite direction, then stretched or contracted. Here is an
example using the vector v previously defined.

Figure 1.4.12 Illustration of scalar multiplication

Addition of vectors is also easy to visualize. To add two vectors, move the
second vector from the origin so that its beginning coincides with the end of
the first vector. The vector sum can be represented by the arrow from the
origin to the end of this relocated second vector. (The dashed arrow in the
following diagram is the relocated vector v.)

Figure 1.4.13 Illustration of vector addition

We can put these previous two ideas together to explain the way to visu-
alize linear combinations (and spans). Let’s consider the vectors u and v as
2
NE

When we ask whether w is in Span{u, v}, this is the same as asking whether
we can form w as a linear combination of u and v. We answer this question
by forming a matrix with the appropriate columns and row reducing. We find

previously defined, and we will also define w as w =
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the matrix
woviw =4

and the RREF of this matrix is
[1 0 —1.6}
0 1| -1.2|"

This tells us that w is in the span of u and v, and that

w=—1.6u—1.2v.

Here is the picture illustrating this.

—1.2v

Figure 1.4.14 Tllustration of a linear combination

The reader may be able to see that no matter what vector w in R? was cho-
sen in this last instance, that vector would be in Span{u, v}. (This means that
Span{u, v} = R2) This has everything to do with the relationship between u
and v.

We will discuss this more carefully in Chapter 5, but this brief comment
will suffice for now. As long as u # 0 in R?, then Span{u} is a line through
the origin. (Remember that the span in this case consists of all multiples of
u.) Similarly, as long as neither u nor v is a multiple of the other vector, then
Span{u, v} is all of R%. (If we were talking about vectors in R? instead of R?
this span would be a plane through the origin.)

1.4.3 Reading Questions

1. Let uand v be the following vectors:

Calculate each of the following vectors.

(a) —2u
(b) u—v
(c) 3u—4v
2. Let u, v, and w be the following vectors:
2 -1 1
u= |0 |, v=1|2], w=|1
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Is the vector
7

-1
8

in Span{u,v,w}? Explain your answer using techniques from this section.
(See especially Example 1.4.9.)

1.4.4 Exercises

1. Write a linear system that is equivalent to the following vector equation:

2 0 7
z|1|4+y|-3|=[-1
—2 1 -1

2. Write a vector equation that is equivalent to the following linear system:

20 — 52 =9
r+3y+z=-1
—y—Tz=0.

3. Let u and v be the following vectors:

List five vectors in Span{u,v}. For each vector, write down the specific
linear combination of u and v used to generate the vector.

4. Describe all possible ways of writing [ 1

[o] o]

5. For each of the following, determine whether b is a linear combination of
u, v, and w. Explain your answer.

} as a linear combination of E] ,

(a)

-2 -3 —4 1
u=|—-4|, v=|-3|, w=|[0|, b=|0
1 2 —4 1.5
(b) _
2 5 7 10
u=|3|, v=|-1(, w=]|2|, b=|-1
-1 -2 -3 4

6. Let u, v, and b be the following vectors:

1 2 5
, v=1|-2|, b=|-1
-2 —6 | h

For what value(s) of & is b in the plane spanned by u and v? Explain your
answer.
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7.

Let u, v, and b be the following vectors:

2 1 by
u= |—-1|, v=13|, b= |b
1 2 bs

Under what conditions is b in Span{u, v}? This will be an equation (or
equations) satisfied by the b;. Explain your answer.

Writing Exercises

10.

11.

12.

Let u= [;} and v = [_41} . Show that {

Z} is in Span{u, v} for all h and

k. Explain your answer.

Two vectors u and v in R™ are called collinear if u = kv or v = ku for
some k € R. Show that the span of any two nonzero vectors in R? which
are not collinear is all of R2.

Give an example of three vectors u, v, w in R? such that no two of them
are collinear but Span{u,v,w} # R3. Explain why your example works.

State criteria on vectors vi,va, ..., v, in R3 such that Span{vy,...,v,} =
R3. Explain your answer.

Prove property 5 from Fact 1.4.10. Note which properties of the real
numbers you use in this proof.



Chapter 2

Fields and Vector Spaces

2.1 Fields

In this section we will consider the real numbers and study their most important
properties in a general setting. In the process, we will learn how to handle
axioms and abstract algebraic concepts.

In Chapter 1, we used the real numbers as the familiar world within which
all of our calculations took place. Before we offer any definitions or results in
this chapter, we will ponder exactly what properties of the real numbers were
essential to these calculations. (The reader is likely so familiar with the real
numbers that its important properties have been internalized and are not in
the conscious mind. In this section we will make those properties explicit.)

The most basic concept in this book is the linear equation. What properties
of the real numbers are used to solve a simple linear equation? In what follows
we will solve the equation 2z + 7 = 12 and draw to the surface some of these
important properties:

% +7=12 (2.1)
Qe+7)—T=12-7 (2.2)
2%+ (T-7)=5 (2.3)

2 +0=5 (2.4)

2 =5 (2.5)

1 1
5 (20) = 55 (2.6)
(%2)96 _ g (2.7)
()2 = g (2.8)
x = g (2.9)

No student wants to write out all of these steps, and no instructor wants
to grade such a solution! But the point is to notice the properties of the real
numbers which are vital to solving an equation like this and which we usually
ignore.

e In (2.3) we used the associativity of addition in R. That is, we can move
the parentheses around in addition and still have an equivalent expression.
(The reader should see subtraction as a form of addition.)

34
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In (2.4) we used the fact that 7 has an additive inverse—a number we
can add to 7 to get 0. (The additive inverse of 7 is —7.)

In (2.5) we used the fact that 0 is an additive identity in R—when we
add 0 to any real number 7, we get r again.

In (2.7) we used the associativity of multiplication in R. We can move
the parentheses around in multiplication just like we can in addition.

In (2.8) we used the fact that % is the multiplicative inverse of 2 in R. In
other words, we can multiply 2 by % to get 1.

Finally, in (2.9) we used the fact that 1 is a multiplicative identity in R—
when we multiply any real number by 1, that real number is unchanged.

By identifying these properties, our goal is to envision other mathemati-
cal realms in which solving linear equations would work the same way it does
within R. Toward this end, we now define an algebraic object called a “field”
which has all of the properties used above (plus a few we haven’t yet men-
tioned).

Definition 2.1.1 A field is a set F with operations + and - and distinct
elements 0,1 € F such that all of the following properties hold.

1.
2.

10.

11.

For all a,b € F, a + b € F. (We say that F is closed under addition.)

For all a,b € F, a-b € F. (We say that F is closed under multiplica-
tion.)

. Forall a,b € F, a+b=>b+ a. (We say that addition in F is commuta-

tive.)

. For all a,b,c € F, a+ (b+c¢) = (a+b)+c. (We say that addition in F is

associative.)

. Foreach a € F, a+0 = 0+a = a. (We say that 0 is an additive identity

inTF.)

For each a € F, there exists an element b € F, such that a+b=b+a = 0.
(We say that each a has an additive inverse in F.)

. Foreach a,b € F, a-b = b-a. (We say that multiplication is commutative

inTF.)

. For each a,b,c € F,a-(b-¢) = (a-b)-c. (We say that multiplication is

associative in F.)

. Foreacha e€F,a-1=1-a=a (Wesay that 1 is a multiplicative

identity in F.)

For each a € F with a # 0, there exists an element ¢ € F such that
a-c=c-a =1 (We say that every nonzero element a in F has a
multiplicative inverse.)

For each a,b,c € F, a-(b+¢) = (a-b) + (a-c). (We say that addition
and multiplication in F satisfy the distributive law.)

O

Note 2.1.2 Axioms 5 and 6 could perhaps be stated with a bit more precision.
Some texts state axiom 5 like this: the set F must have an additive identity,
that is, an element e such that  + e = e+ x = x for all x € F. Those same
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texts may also state axiom 6 without reference to the symbol 0: for each a € F,
there exists an element b € F such that a +b = b+ a = e, where e is the
additive identity of the field.

For some students, the use of the symbol 0 might be helpful, reminding
them of the essential property of the additive identity through familiarity. But
this may be confusing when handling a set which contains the symbol 0 when
that symbol does not function as the relevant additive identity.

Our point here is that the use of 0 in the axioms for a field (and some of
the subsequent theorems) is intended to stand in for a generic symbol for the
additive identity. Similarly, the symbol 1 stands in as the generic symbol for
the multiplicative identity. (A reader could imagine a restatement of axioms 9
and 10 above using a letter as the multiplicative identity in the way we have
demonstrated axioms 5 and 6 can be restated.)

The reader should also note that in a generic field the term “nonzero” means
“not the additive identity.”

A note about axioms. What are presented in Definition 2.1.1 are known
as the axioms of a field. This may be the reader’s first exposure to axioms in
mathematics, and this is worthy of a comment or two.

Much of theoretical mathematics is built upon axiomatic reasoning. The
thinking goes like this: If we assume a limited number of properties are true,
and we assume nothing beyond those properties, what else follows necessarily?
So, we can ask what is true of a field, not just what is true of the real numbers.
While the real numbers may have specific properties that a general field does
not, anything that is true of a general field must be true of the real numbers.

Working through some examples (and non-examples) will help us make
sense of this definition.

Example 2.1.3 The set of real numbers R is a field. (If the real numbers
were not a field, then we wouldn’t have done a very good job of abstracting
the properties of the real numbers for this definition!) O

Example 2.1.4 The complex numbers are defined in this way:
C={a+bi|abeR}
where i2 = —1. Addition and multiplication are defined in this way:

(a+bi)+ (c+di)=(a+c)+ (b+d)i
(a+bi) - (¢ + di) = (ac — bd) + (ad + be)si.

Notice that the addition and multiplication occuring within the parentheses on
the right side of these equations are happening within R. In this way, showing
that some of the field axioms hold for C depends on R being a field.

The elements 0 and 1 in C are

0=0+0i
1=1+0i

and these elements are not equal. (We recall that part of the definition of a
field is that the elements 0 and 1 are distinct.)

With these definitions, one can check that C satisfies the properties of a
field. We will prove a few of these properties, and we will assign a few of these
proofs in the exercises.

The definitions of + and - in C show that C is closed under addition and
multiplication. (Notably, this relies on R being closed under addition and
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multiplication!) To prove that the addition in C is commutative, we consider
two complex numbers a + bi and ¢ + di. Then

(a+bi)+ (c+di)=(a+c)+ (b+d)i (2.10)
= (c+a)+ (d+b)i (2.11)
= (c+ di) + (a + bi). (2.12)

(We note that line (2.11) used the fact that addition of real numbers is com-
mutative.) This proves that addition in C is commutative.
We will also prove that 0 is an additive identity in C. If a + bi € C, then

(a+bi)+ (04 0i) = (a+0) + (b+0)i = a + bi.

(This uses the fact that 0 € R is an additive identity.) We note that although
the definition of a field requires us to examine addition by 0 “on both sides,”
since we just proved that addition is commutative, what we have already shown
is sufficient. |

Example 2.1.5 The set of non-negative real numbers RZ° is not a field. (When
thinking about a subset of the real numbers, we will assume that the usual
addition and multiplication are in view unless otherwise stated.) While this
set is closed under addition and multiplication, it does not contain additive
inverses for positive real numbers. For example, the number 9 has no additive
inverse in this set. O

Example 2.1.6 The set of rational numbers Q is a field. The rational
numbers are defined as the set of all quotients (hence the symbol Q) of integers;
more formally,

Q:{%m,bez,b;ﬁo}.

We do not need to show that all of the field axioms hold in order to prove
that Q is a field. Since Q is a subset of R, and since it therefore inherits its
operations from R, some of the field axioms hold automatically. (These would
include the associativity and commutativity of addition. What else holds “by
inheritance?”) Checking some of these details is left to the exercises. O

We refer the reader to Appendix A for the definitions of Z,, and F,,, related
notational conventions, and a refresher on modular arithmetic. All of this is
necessary for the following example.

Example 2.1.7 When p is a prime integer, then F), is a field.

Working within F, can be a bit destabilizing at first, as the calculations
take some practice. However, this effort pays off because the smallest finite
fields offer some of the most tangible sandboxes in which to play. We will
be using F,, for small p throughout this chapter to develop some interesting
examples.

Part of the definition of a field is that one can divide by any nonzero element.
But because we work within R so often, division within F, is strange. In s,
for instance, the multiplicative inverse of 2 is 2. (Another way to say this is
that, within F3, the element that acts the most like % is 2.)

The field Fy contains only the elements 0 and 1, and it therefore is a model
for anything that is binary. For this reason, working in Fs is often very useful
in computer science. O

Having defined fields, we now turn to the consequences of this definition.
In other words, if a set with two operations meets the definition of a field, what
else must also be true? The following theorem presents some basic results that
flow from the axioms of a field. Some of these will look familiar because they
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are true in R and that’s where most people are comfortable working.

Theorem 2.1.8 For any field F, the following are true.
1. The additive identity in F is unique.
2. The multiplicative identity in F is unique.

3. Additive inverses in F are unique. (This means that for every element
x € F, there exists a unique element y € F which is the additive inverse
of x. The truth of this statement justifies our use of the notation —x for
the additive inverse of an element z € F.)

4. Multiplicative inverses in F are unique. (The truth of this statement
justifies our use of the notation x~' for the multiplicative inverse of a
nonzero element x € F.)

5. For everyx € F, —(—x) = =.

6. For every nonzero x € F, (z71)~! = z.

7. For everyx €, 0-2 =0.

8. For everyxz € F, (—1) -z = —zx.

9. If v,y € F and x -y =0, then either x =0 or y = 0.

Proof. We will prove a few of these and leave the rest as exercises.
To prove (Item 1) that the additive identity is unique, we must prove that 0
is the only element in F which has the properties of an additive identity. We
suppose that a € F is such that a + * = x + a = z for every element z € F.
Since this must be true for every z, it must be true for x = 0. The previous
equation then becomes

a+0=0+a=0.

Since 0 is an additive identity, a + 0 = a, which combined with the fact that
a+0 = 0 means that a = 0. This proves that the additive identity, 0, is unique.
To prove (Item 3) that additive inverses are unique, we must prove that for any
element = € F, there is a unique element that behaves like an additive inverse
of xz. We let x € F and we suppose that y, z € F are both additive inverses of
z. We wish to show that y = z.

Our assumptions mean that

r+y=y+z=0
r4+z=2z+x=0.
We then use these assumptions, along with some of the properties of fields (the

associativity of addition and the properties of the additive identity) in this
calculation:

z+y=0
z+(x+y)=2+0
z4+x)+y=-=2
0+y==
Y=z
This proves that additive inverses are unique. |

We offer one final note on notation. We will often use juxtaposition to
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denote multiplication within a field. That is, we may write xy instead of = - y
to indicate the product of two elements in a field. We trust the reader will
adjust quickly to this seismic shift.

Reading Questions
1. Carry out the following calculations within Fr.
(a) 443
(b) 5-6
(c) 2-(346) (Complete this calculation in the two different ways present
in the distributive law and verify that they are equal.)

2. What is the additive inverse of 3 in F57 What is the multiplicative inverse
of 3 in F;? Explain your answers.

3. Theorem A.0.6 says that Zg is not a field because 9 is not prime. Identify
a nonzero element of Zg that does not have a multiplicative inverse and
explain why it does not have an inverse.

Exercises

1. Carry out the following calculations in Zg. (Remember that your answer
for calculations in Z,, should be a number between 0 and n — 1.)

(e) (=3)-(5+3+(-4))

2.  We know that since 12 is not a prime, Zis is not a field. In particular,
the axiom about multiplicative inverses does not hold. For each nonzero
element of Z5, determine whether or not it has a multiplicative inverse.
If the element has a multiplicative inverse, state that inverse.

3. For each nonzero element of Fyq, find the multiplicative inverse.
Writing Exercises

4. Finish Example 2.1.4. In other words, complete the proof begun in Ex-
ample 2.1.4 that C is a field.

5. Consider Example 2.1.6. Which of the field axioms for Q hold “by inher-
itance” and for which of the axioms is there something that needs to be
proved? Put each of the field axioms into one of these two categories. For
each axiom that doesn’t hold merely “by inheritance,” prove that it holds

for Q.

6. For a set A, define the set of polynomials over A in the usual way:
Alx] = {ag + a1x + agaz® + -+ | a; € A}.
(a) Is Z[z] a field? Justify your answer.

(b) Is R[z] a field? Justify your answer.
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7. In this problem we consider “adding” an element to F3. If F3[a] is defined
by
Fsla] = {a +ba | a,b € F3,a” = 2},
is F3[a] a field? Justify your answer.

8. In this problem we consider “adding” an element to Fs.
(a) If F5[o] is defined by
Fsla] = {a +ba | a,b € F5,a” = 4},
is F5[a] a field? Justify your answer.
(b) If F5[a] is defined by
Fsla] = {a + ba | a,b € F5, 0 = 2},

is F5[a] a field? Justify your answer.

9. Define Q[v/2] by
QIV2] = {a+bV2 | a,b e Q}.

Is Q[v/2] a field? Justify your answer.

10. Consider the set R? with operations defined as follows:

(a,0) ® (¢,d) = (a + ¢, b+ d)
(a,b) ® (¢,d) = (ac — 2bd, ad + be).

Is R? with these operations a field? Justify your answer.

11. Prove Item 2 of Theorem 2.1.8.
12. Prove Item 4 of Theorem 2.1.8.
13. Prove Item 7 of Theorem 2.1.8.
14. Prove Item 8 of Theorem 2.1.8.
15. Prove Item 9 of Theorem 2.1.8.

2.2 Solving Linear Systems Over Fields

Having now defined a field, in this section we will show how the problems of
chapter 1 can be solved in this general setting. We have laid the groundwork
for reproducing the results of the first three sections of Chapter 1 for a field F
instead of the real numbers.

We now return to where we began in Section 1.1: the humble linear equation.
If fields are generalizations of the real numbers, and if we can solve linear
equations when everything in sight comes from the real numbers, we should be

able to solve linear equations when everything in sight comes from a general
field.

Example 2.2.1 Counsider the following equation where all variable values,
constants, and coefficients are drawn from Fs5:

3r+2=1.

Solving this equation in R would be easy; let’s solve it in F5.
We first note that the additive inverse of 2 in F5 is 3, so our first step is to
add 3 to both sides of the equation:

3r+2+3=1+4+3
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3xr = 4.

We now need the multiplicative inverse of 3 in F5, which is 2. We multiply
both sides by 2 to get our answer:

2(3z) = 2(4)

T = 3.

When we check that our solution works (we plug = 3 back into the original
equation and perform the computations in F5), we find that it does:

3r+2=33)+2=9+2=11=1.

|
The point of this section is that the algorithm for solving linear systems
(Algorithm 1.3.9) which worked for R also works for a general field F. In
order to be comfortable with this notion, we need to talk quickly through the
development of that algorithm in this general setting.
Because a general field contains both 0 and 1 (or rather, an additive and
a multiplicative identity), and because within a field we can perform all of
the operations needed to solve linear systems, everything we want to do is
legitimate. The definitions of the coefficient and augmented matrices, the
elementary row operations, the echelon forms, pivots, and the row reduction
algorithm (all found in Section 1.2 and Section 1.3) are the same once we move
away from R. Similarly, the three important theorems we have encountered
so far (which we will reproduce below) all hold over a general field F. We will
omit the proofs of these theorems because the earlier proofs, when translated
from R to F, are still valid.

Theorem 2.2.2 Suppose A is the augmented matriz of a linear system over
a field F, and suppose that A is in reduced row-echelon form. Then the linear
system is consistent if and only if there is no pivot in the final column of A.

Theorem 2.2.3 Suppose that A is the augmented matriz corresponding to a
consistent m X n linear system over a field F, and suppose that A is in reduced
row-echelon form. Then the system has a unique solution if and only if there
is a pivot in each of the first n columns of A.

Theorem 2.2.4 Let A be an m X n matriz with entries in a field F and let
A be row equivalent to both B and C. If B and C are in reduced row-echelon
form, then B =C.

The algorithm for solving a linear system, supported by these theorems,
remains the same as in Algorithm 1.3.9. We will finish this section with two
examples where we go through this algorithm carefully.

Example 2.2.5 The following is a linear system over Fs:

{E1+2£U2+(E3:1

2171 + 2.172 =1
x1 + 223 = 0.
We will begin to solve this system by forming the augmented matrix:
1 2 171
2 2 0|1
10 2|0

Since working with fields other than R is still new, we will explain all of the
steps needed to reduce this matrix to its RREF. We first add the first row to
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the second row to produce a 0 in the (2, 1) position. (Remember that 1 is the
additive inverse of 2 in F3!) This matrix is the result:

1 2 111

01 1|2

1 0 210

We now add twice the first row to the third to produce a 0 in the (3,1)

position. Here is that matrix:

1 2 111

0 1 12

0 1 12

We now notice that the second and third rows are the same. This means
the third row will end up being a row of zeros, and we can achieve this by
adding twice the second row to the third (in Fs, this is the same as subtracting
the second row from the third):

1 2 1|1
01 1|2
0 0 010
The final step in reducing this matrix is to take care of the entry which is

above the pivot in the (2,2) position. We add the second row to the first, and
this is the matrix which results:

o = O
O = N
o NN O

1
0
0

Our matrix is now in RREF, and from Theorem 2.2.2 we can conclude that
this linear system is consistent. Further, from Theorem 2.2.3 we can see that
there is not a unique solution to this system. We can write the solutions to
this system, however:

r1 = I3
To =2+ 213
3 is free.

Since F3 has three elements, there are three possible values for x3, meaning
that there are three solutions to this linear system. |

Example 2.2.6 The following is a linear system over C:
(2 —d)xy + (2 + 4i)xy + (=7 + 6i)zs = 2 — 61
(1 —=20)x1 4+ (54 2i)xe + (—2+ 124)z3 = —3 — 8i
—3z1 + (1 = 5i)za + 93 = —4 + 3i.
This example may seem a bit intimidating at first, especially for readers who
have not dealt much with C. But when we follow our step-by-step approach,

we should arrive at a solution with minimal problems.
First, we write down the augmented matrix of this system:

2—4 244 —T7+6i | 2—6i

1—-2i 542 —2+412| -3—-8i

-3 1-5 9 —4 4 3¢
To start row reducing this matrix, we need a 1 in the (1,1) entry. Instead
of following Algorithm 1.3.9 rigidly by exchanging rows and then dividing (or
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multiplying by an inverse), we will skip the first step and handle the rows as
they are.
For a nonzero element a + bi of C, the multiplicative inverse is

a b .
— i.
a2 +b2 a2 +b?

This means that the inverse of 2 — i is % + %z So, in order to get a 1 in the
(1,1) position, we multiply the first row of the matrix by % + %Z Here is the
result:

1 2 —4 41 2—-2
1—-2¢ 5420 —2412¢ | -3 - &
-3 1-5 9 —4+ 31

We now work to clear out the other entries in the first column. We add
(—1 + 24) times the first row to the second and we add 3 times the first row to
the third. (We are taking care of two steps at once here.) This is the result:

1 2 —A+i | 2—2
0 1 3i —1—-2
0 1+7 —-3+31| 2—-3¢
(For readers who are new to C, verifying these calculations would be an excellent
exercise!)

Since we already have a 1 in the (2,2) entry, we can use that to produce
a zero below it in that column. We add (—1 — ¢) times the second row to the
third row, and we get this:

1 29 —44+4| 2—-2
0 1 31 —1-2
0 0 0 1

Even though this matrix is not yet in RREF, we do not need to continue
with our algorithm. Theorem 2.2.2 tells us that the original system is incon-
sistent because of the pivot in the final column. Therefore, this system has no
solution. ]
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Note 2.2.7 Readers will be able to put a matrix over R into RREF without dif-
ficulty using various computational means—handheld calculators, smartphone
applications, and any number of online matrix manipulators. However, work-
ing with matrices over fields which are not R presents some difficulties for most
of these applications.

Students can find similar online calculators for matrices over the complex
numbers through online searches. Finite fields are a bit trickier. David Augus-
tat has created the website Matrixer® for this purpose, and I encourage readers
to take advantage of this resource after they have first mastered the mechanics
themselves. (That is, tools like this are best used to check work that is done
by hand and then, when the by-hand calculations are no longer the main point,
to streamline the process.)

Finally, we have written an R package called matrixmodp, which can be
found on CRAN*. This package can handle matrices over finite, prime fields,
but it does not have the capability to handle matrices over more exotic finite
fields. (We are aware that R is not the best vehicle for matrix algebra, but this
book was largely written when we were also learning R, and this was a good
excuse to learn how to author a package in that language.)

Reading Questions

1. Solve the following linear equation over C. List the steps you take in
solving the equation in terms of the axioms of a field.

(1-3i)z+(4+2i)=—-1—-3i
2. The following is a matrix with entries from F5. Reduce this matrix to
REF. (It is not necessary to reduce the matrix to RREF.) Describe each
step you take.

N O
O =N
o= o
N

Exercises

1. Solve the following linear system over Fa:

r+z=1
y+2z=0
r+y+z=1

2. Solve the following linear system over Fs:

20 4+y+2=0
r+22=2
y+z=1

2z 42y =1.

3. Solve the following linear system over Fr:

201 + 320+ x4 =4
31‘1+1‘3+5I4:6
4x1 + o + 223 = 5.

3matrixer.davidaugustat.com/
dcran.r-project.org/web/packages/matrixmodp/index.html


https://matrixer.davidaugustat.com/
https://cran.r-project.org/web/packages/matrixmodp/index.html
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4. The following matrix A is defined over C:

1 1414 3

A=1, —34+2 6+10i|"

Put this matrix into RREF.
5. Solve the following linear system over C:

(—)x+(B—i)z=-1
B+20)z+y+(—14+9)z2=06—3i
(1+d)z+ (2 i)y — (20)z = 10 — 5i.

6. Solve the following linear system over Fs:

4 +y =2
3r+2y+2z=1
r+3y+2z=0.

7.  The following matrix A is defined over Q[v/2] (see Exercise 2.1.9):

142 2 3 —1+2v2
A= 32 1—+2 0 242
4 —5+2V2 3+42 -1

Put this matrix into RREF.
8.  The following matrix A is defined over F3[a] (see Exercise 2.1.7):

24« 2 1
A= |1+ 2« «o 2
0 l1+a 242«

Put this matrix into RREF.
Writing Exercises

9.

(a) Suppose that the following is a linear system over Fs:

ar+by=e
cr+dy = f.

Show that if ad + 2bc # 0, then this linear system has a unique
solution. (For reference, see Exercise 1.3.12.)

(b) Suppose that the system stated in part a. of this problem is a system
over F,. What is the correct inequality the coeflicients a, b, ¢, and
d must satisfy in order for the system to have a unique solution?
State your answer and prove it is correct.

10. Consider a linear system

a1121 + -+ a1pTn = by

am1ZT1 + -+ G Tn = bma
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11.

with all coefficients and constants in the integers.

(a) Show that if the system has a solution x € R™ then it must have a
solution y € Q™.

(b) Show that if the system has a unique solution x € Q™ then x is also
the unique solution in R".

Give descriptions of linear systems with each of the following properties, or
state why such a system is impossible. Specific numbers and equations are
not necessary, but your description should include what field is involved,
the number of equations and variables, the number of free variables, etc.
Explain your answers.

a) A consistent system with exactly 8 solutions

(a)

(b) A consistent system with exactly 10 solutions

(¢) A consistent system with exactly 9 solutions
)

(d) A consistent system with exactly 17 solutions

2.3 Vector Spaces

We now move to our next task of abstraction. We have generalized the real
numbers and introduced the idea of a field, and we will now generalize the set
and structure of the vectors R™ (see Section 1.4) to a vector space.

Definition 2.3.1 A vector space over a field F is a set V' on which are
defined the operations of addition and scalar multiplication such that all of the
following properties hold.

1.
2.

10.

The

For allu,v € V, u+ v € V. (The sum of two vectors is a vector.)

For all c € F and all v e V, ¢v € V. (The scalar multiple of a vector is a
vector.)

. Forallu,v eV, u+v=v+u (Vector addition is commutative.)

. For all w,v,w € V, (u+v)+w = u+ (v+w). (Vector addition is

associative.)

. There is a vector 0 € V such that v+ 0 = v for all v.€ V. (There is

a vector which is the identity for vector addition. We call this the zero
vector.)

. For each u € V there exists a vector v € V such that u+ v = 0. (Each

vector has an additive inverse.)

. For each v € V, 1v = v. (Scalar multiplication by 1 is an identity.)
. For each v € V and all ¢,d € F, ¢(dv) = (ed)v. (Scalar multiplication of

a vector is associative.)

. For allu,v € V and each ¢ € F, ¢c(u+v) = cu+cv. (Scalar multiplication

distributes over the sum of vectors.)

For each ve Vandall ¢,d € F, (c+d)v = cv+dv. (Scalar multiplication
distributes over the sum of field elements.)

elements of V' are called vectors and the elements of F are called scalars.

O
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Note 2.3.2 The reader will want to note when the multiplication of field
elements is in view and when scalar multiplication (of a scalar times a vector) is
in view. The context should help, as should our practice of using bold notation
for vectors. The product of vectors (in the way that we take the product of
field elements) is not a defined construction in a general vector space.

Faced with this rather abstract definition, some examples are in order.

Example 2.3.3 The set R™, with the operations of scalar multiplication and
vector addition defined in Definition 1.4.3, is a vector space over R. As with
our definition of a field, if R™ is not a vector space then we have carried out
the enterprise of abstraction rather poorly. (See Fact 1.4.10 where we stated
most of the properties of a vector space for R™, though we did not use that
language.) O

Example 2.3.4 Let F be a field and let F™ be defined in the following way:

ai

ag
F" = . CLI‘EF

an

The operations of scalar multiplication and vector addition are defined for F”
over IF in the same way that the operations of scalar multiplication and vector
addition are defined for R™ over R. Then F™ is a vector space.

This should be relatively easy for the reader to believe, but checking the
details could be a helpful exercise in the definitions of both fields and vector
spaces. U

Example 2.3.5 Let A be a subset of the real numbers. Define the set V as
the set of all functions A — R. Given appropriate operations, this is a vector
space.

If f and g are elements of V', then we define the sum as

(f +9)(t) = f() +9(t)

for all t € A. Additionally, if ¢ € R and f € V, then we define scalar multipli-
cation as

(cf)(t) = cf(t)

for all t € A. We will now argue that V is a vector space.

Looking back at Definition 2.3.1, the first two axioms hold by the way we
defined the operations. Axioms three and four hold because addition in R is
both commutative and associative. (Since these vectors in V are functions
which take values in R, the properties of R are once again crucial.)

The zero vector in V' is the function f(¢) = 0, the function which is uni-
formly zero for each value t € A. This function has the properties of the zero
vector mandated by axiom five.

The additive inverse of a function g € V' is the function (—1)g = —g since

(9 + (=9)(®) = g(t) + (=9)() = g(t) — g(t) = 0

for all t € A. This shows that axiom six holds.
The rest of the axioms hold because of the definitions of vector addition
and scalar multiplication and the properties of the real numbers. |

Note 2.3.6 The previous example can be difficult to digest, because we are
considering functions to be vectors. It may take some adjustment to think
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of functions—rather than single real numbers (or even ordered lists of real
numbers)—as the objects of study .

Example 2.3.7 Let P, denote the set of all real-valued polynomials of degree
less than or equal to n with real coefficients. (Recall that the degree of a poly-
nomial is the largest exponent of the variable that has a nonzero coefficient.)
This means that the polynomial p(z) = 7z'® — 12° + 9 has degree 10 and is an
element of P, for all n > 10.

We consider vector addition to be the usual algebraic sum of polynomials
and scalar multiplication to be the usual product of a polynomial by a constant.
Then P, is a vector space over R. ([l

Example 2.3.8 Consider the set V = R? but with non-standard operations.
(In this example and the next, we will use horizontal instead of vertical notation
for R2. This is purely for ease of notation in these limited instances.) We define
the sum of two vectors u = (u1,us) and v = (v1,v2) to be

udv=(uv,1),

and we define scalar multiplication of a vector u = (u1,u2) by a real number ¢
to be
cOu=(cuy,1).

It is a good exercise to grapple with the axioms and determine whether or not
V' with these operations is a vector space.

(We are using the symbols @ and @ because these operations we are defining
are not familiar ones, and most readers likely have no previous associations with
these symbols. For our purposes, these symbols have no overarching meaning;
they will be redefined for the purposes of specific examples.)

With some work, the reader will find that this is not a vector space. All we
need to do in order to show this is not a vector space is to find one axiom that
does not hold. We will show that the fifth axiom (regarding the zero vector)
does not hold.

We must be careful here, because the terminology can become confusing. By
“zero vector” we do not always mean in R? the ordered pair (0,0). Depending
on the operations that are in view, the zero vector may exist in a form other
than (0,0). To show this axiom does not hold, we must argue that no element
of R? can have the properties of a zero vector given these operations.

We will argue by contradiction. Suppose there is a vector u = (uq1,uz)
which has the properties of a zero vector. This means that, for any v € V, we
have u@® v = v@ u = v. We consider the vector v = (2,2). If u is the zero
vector, then we must have

(u1,u2) © (2,2) = (2,2),
but the addition on this set means
(u1,u2) ®(2,2) = (2u1,1).

Since it is impossible to have (2,2) = (2uy, 1) as the second coordinates are
not equal as elements of R, we have a contradiction, and therefore there can
be no zero vector in V with these operations. (]

Example 2.3.9 We again consider the set V = R2?. Vector addition will be
the usual sum in R?, but scalar multiplication will be different. For any real
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number ¢ and any u = (uy,u2) € R?, we define ¢ ® u by
cOu= (cui, scus).

Once again we pose the question: Is this a vector space?

While it is good practice to check all of the axioms, again we only need to
find one axiom which does not hold in order to show this is not a vector space.
(If it were a vector space, we would need to prove that all of the axioms hold.)
We will show that scalar multiplication by 1 is not an identity (axiom 7).

We will examine the scalar product 1 ® (1,1):

1o(1,1) =(1,3).

If axiom 7 were to hold, we would have 1 ® (1,1) = (1,1). Since (1,1) # (1, 1),
we have shown that axiom 7 does not hold. Therefore, this is not a vector
space. (|

Example 2.3.10 If we fix positive integers m and n and a field F, then M,, ,,(F)
is the set of all m x n matrices with entries in F. When m = n, we use the
notation M, (F).

With the standard addition and scalar multiplication of matrices (see
Note 1.4.8 for a description), the set M,, ,(F) is a vector space over F for
a fixed m and n. The quick explanation here is that because of the way scalar
multiplication and addition of matrices are defined, once a reader believes that
F™ is a vector space (see Example 2.3.4), believing that My, »(F) is a vector
space just amounts to considering several columns at the same time. But since
these columns have no interaction with each other as far as these operations are
concerned, none of the vector space axioms will be violated. The zero vector
for this vector space is the zero matrix. O

As evidence of the fact that R™ is the model for our general definition of
a vector space, we now repeat the definitions of linear combination and span.
These definitions in the general setting will be necessaary for the following
section. (See the original definitions in Definition 1.4.6.)

Definition 2.3.11 Let F be a field and let ¢i,co,...,¢n € F. Let V be a
vector space over F and let vy, vo,...,v,, € V. Then the linear combination
of the vectors vy, vs,...,Vv,, with weights c1,ca,..., ¢, is

C1V1 + CoVy + -+ - + CmVm.

The span of the vectors vy, va, ..., v, is the set of all possible linear combi-
nations of v, va,...,v,, and is written Span{vy,...,v,,}. In other words, the
span is defined to be

m
Span{vy,..., v, } = {Zcivi [e1yenoyem EIF}.
i=1

O

The final result in this section is similar to Theorem 2.1.8 in which we
summarize some of the “obvious” facts which are true in any vector space. We
will prove a few of these facts here and leave some others as exercises.

Theorem 2.3.12 Let V be a vector space over a field F. Then all of the
following hold.

1. The zero vector in V is unique.



CHAPTER 2. FIELDS AND VECTOR SPACES 50

Additive inverses of vectors in V' are unique.
For everyveV, —(—v) =v.
For everyveV, Ov=0.

For every c e F, c0 = 0.

S = e

For everyveV, (—=1)v = —v.
7. IfceF,veV, and cv =0, then either c=0 or v=0.

Proof. We will first prove property 2. Suppose that u € V and that both
v,w € V have the properties of being additive inverses of u. We will show that
V=w.

Since u+ v =0 and u+ w = 0, we have

ut+v=u+w.

Adding v to both sides (and using both the associative law and the properties
of the zero vector) we have

v+u)+v=(FV+u+w
0+v=0+w

V=W.

We will now show that property 4 holds. Since 0 = 0+ 0 in F, we can use the
distributive property (axiom 10 in Definition 2.3.1) to find the following:

Ov=(0+0)v=0v+ 0Ov.

We have Ov = 0v + Ov, and subtracting Ov from both sides gives us 0 = Ov.
(The reader should recall that by “subtracting” we mean adding the additive
inverse, which every vector in a vector space possesses.)

To prove property 6, we must show that (—1)v has the properties of the additive
inverse of v. (Then, by property 2, we can conclude what we want.) We will
use the distributive law (axiom 10 again) as well as the just-proved property
4:

v+ (-Dv=1v+(-1)v

=(1-1)v
=0v=0.

Reading Questions

1. In this question we will explore F3. (See Example 2.3.4. The vector space
2 should be thought of as being the same as R? except that the entries
and the operations are coming from Fs.)

(a) Write down two nonzero elements of F2 and compute their sum.

(b) Write down one nonzero element of F3 and compute the scalar mul-
tiple of this vector by the element 3 of Fj.

2.  Write down one element of Py. (See Example 2.3.7.)
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3. Consider the vector u = (1,3) in FZ. (Again, we are writing the vector
horizontally for convenience.) How many elements does Span{u} contain?
Write all of them down.

Exercises

1. For each of the following, determine whether the given subset V' C R? is a
real vector space, using the usual operations of vector addition and scalar
multiplication in R2.

(a) V={(z,y) | z,y = 0}
(b) V ={(z,y) | zy = 0}
() V=A(zy)ly=2a}

2.  Consider the set V = F2 with the usual scalar multiplication but with

vector addition defined this way:

(u1,v1) @ (u2,v2) = (w1 + uz,v1 +v2 + 1).
This is not a vector space over F5. Determine which of the vector space
axioms fail, and give an explanation for each such axiom.

3. Consider the set V = Q? with the usual vector addition but with scalar
multiplication defined this way:

cO (z,y) = (0,cy).
This is not a vector space over (. Determine which of the vector space
axioms fail, and give an explanation for each such axiom.

4. Consider the following three elements of Ps:

_ o2

pP1 = Qt — t + 6

po = —t3 — 2 + 4t

ps =4t + 12 + 2t + 1.
Calculate the linear combination of py, p2, and ps with weights 2, —3, and
—2, respectively.

5. Consider the following three elements of F%:
u= ! u= 2 w= !
2 oy B

Calculate the linear combination of u, v, and w with weights 1, 2, and 2,
respectively.

6. Consider the vector space F3.

(a) How many distinct vectors are in F3?

(b) If u and v are the following vectors,

1 0
u= (0|, v=]1
1 1

how many distinct vectors are in Span{u, v}?
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7.

Consider the vector space V' of all functions R — R. (This general setting
was introduced in Example 2.3.5.) Let f and g be the following vectors
inV:

f(t) =sin*(t), g(t) = cos?(t).
Is the constant function h(t) = 4 an element of Span{ f, g}? Explain your
answer.

Consider the following vectors in F3:

Is w € Span{u, v}? Explain your answer.

Consider the following vectors in C3:

2i 1+ 2 2+ 2
u= |(1—-14|, v= 0 , W= |2—1
2—1 441 3i

Is w € Span{u, v}? Explain your answer.

Writing Exercises

10.

11.

12.

13.

14.

15.

16.
17.

Consider the following subset of R?:

V= {(z,y) |y =4z}

Prove that V, with the usual operations of vector addition and scalar
multiplication in R?, is a vector space over R. (Hint: Since V is a subset
of R? with the same operations as R?, some of the axioms may not need
to be proved from scratch.)

Is R a vector space over Q7 (Addition and scalar multiplication should
be understood as the obvious operations in R.) Explain your answer.

Is Q a vector space over R? (Addition and scalar multiplication should
be understood as the obvious operations in QQ.) Explain your answer.
Prove that C is a vector space over R. (Addition and scalar multiplication
should be understood as the obvious operations in C.)

Prove that every vector space over C is a vector space over R.

Prove Item 1 in Theorem 2.3.12.

Prove Item 5 in Theorem 2.3.12.

Prove Item 7 in Theorem 2.3.12.

2.4 Subspaces

Whenever we begin to deal with abstraction in mathematics, we also consider
the relationship between these abstract concepts. We have already made it
clear how the notions of fields and vector spaces are related—a vector space
requires that we know what a field is! But mathematicians also consider how
these abstract objects might fit inside or contain each other.

The most basic example of this is something with which all readers are

likely familiar. When we learn about sets, we soon also learn about subsets.
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For two sets A and B, we say that A is a subset of B when all of the elements
of A are contained in B. We denote this by A C B.

A vector space is a set with a lot more structure. So a “sub-vector space”
must be a subset with the properties of a vector space. Here is the formal
definition.

Definition 2.4.1 Suppose that V is a vector space over the field F. Then a
subset W C V is a subspace of V if W is also a vector space over F with the
same operations of vector addition and scalar multiplication that are used for
V. %

To put this less formally: A subspace is a subset which is a vector space
over the same field with the operations inherited from the larger space.

Since the operations of a subspace are inherited, we need not check the full
list of properties (from Definition 2.3.1) to prove that a subset is a subspace.
In fact, when we consult that definition, we see that axioms 3, 4, and 7-10 will
automatically be satisfied—these are properties of the operations, not of the
set on which the operation is taking place. This leads to the following fact.

Fact 2.4.2 Let V' be a vector space over the field F and let W be a subset of
V. Then W is a subspace of V if the following properties hold.

e Forallu,ve W,u+veW. (The subset W is closed under addition.)

e ForallceF and allve W, cve W. (The subset W is closed under
scalar multiplication. )

o The zero vector 0 of V' belongs to W.

e For each u € W there exists a vector v.e W such that u+v = 0. (The
subset W contains all additive inverses.)

From this fact, there appear to be four conditions to check in order to
prove that a subset is a subspace. However, we will refer the reader back
to Theorem 2.3.12. By part 6 of that theorem, we know that if a subset of
a vector space is closed under scalar multiplication it must also contain all
additive inverses. This means that there are only three conditions to check to
prove that a subset is a subspace. We summarize this as a theorem.

Theorem 2.4.3 Let V be a vector space over the field F and let W be a subset
of V. Then W is a subspace of V' if the following properties hold.

1. Forallu,ve W,u+veW.
2. ForallceF and allve W, cve W.

3. The zero vector 0 of V' belongs to W.
As always, some examples are in order!

Example 2.4.4 Every vector space V has a subspace consisting of a single
vector—the zero subspace: {0}. In a trivial way, this set meets all of the
conditions listed in Theorem 2.4.3. |

Example 2.4.5 Let V be the vector space of all functions R — R as defined
in Example 2.3.5. Let W be the subset of all polynomials. (This means we
include polynomials of any degree.) Then W is a subspace of V.

Since the sum of two polynomials is another polynomial and the scalar mul-
tiple of a polynomial is a polynomial, the first two conditions in Theorem 2.4.3
hold. Additionally, the zero function in V is the same as the zero polynomial
in W. This proves that W is a subspace of V. O
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Example 2.4.6 The vector space R? is not a subspace of the vector space
R3. This may seem surprising, as the operations for these spaces are clearly
compatible, and we often think of R? as “living inside” of R3.

However, this common way of thinking is wrong because the space R? is not
even a subset of R3; thus, it is impossible for R? to be a subspace of R®. (The
set R? consists of ordered pairs of real numbers, and R? consists of ordered
triples of real numbers.)

We can make a slight adjustment to match the way that many people think
of R? as “living inside” of R3. We define the set A in the following way:

A={(z,y,0) € R®}.

Then A is what we usually call the “zy-plane” in R3. This subset A is a
subspace of R3. O

Example 2.4.7 Here is a collection of examples that generalize Example 2.4.6.
Every line through the origin in R? is a subspace of R?, and every line or plane
through the origin in R? is a subspace of R3. On the other hand, lines in R?
which do not pass through the origin are not subspaces of R?, and lines and
planes which do not pass through the origin in R? are not subspaces of R?.
The details are left for the exercises. |

The notion of the span of a set of vectors gives us another angle through
which we can identify subspaces. We begin with a result.

Theorem 2.4.8 Let V' be a vector space over a field F. If vy,...,v, are vectors
in V', then Span{vy,...,v,} s a subspace of V.

Proof. We let W = Span{vy,...,v,}. By the definition of the span of a set of
vectors, every element w of W can be written in the following form:

W =C1V] + -+ CpVp,
where ¢y, ...,c, € F. We first observe that 0 € W by taking ¢y =--- =¢, = 0.
Next, if u and w are elements of W, we can write these vectors as

u=cvy +---+cpvp

w=d1vi + - +dpvy,
for some scalars ¢; and d;. The sum of these elements is

u+w=(c1vi+ - +cyvn) + (divi+ - -+ dpvy)
=(c1+di)vi+ -+ (cn +dpn)vn.
(We are using some of the properties of a vector space from Definition 2.3.1 in
order to carry out this algebraic manipulation.) Since ¢; + d; € F for each i,
this proves that u+w e W.
Finally, we let ¢ € F and w € W. We want to show that cw € W. We can
assume that w has the form
W:dlvl ++dnvna
where dy,...,d, € F. Then we have
cew = c(dyvy + -+ dpvy)
=c(div1) + -+ (cdpva)
= (cdy)vy + -+ - + (cdy) V.
(Again, we are using properties of the vector space V here.) Since cd; € F for
each i, this proves that W is closed under scalar multiplication.

Since W has all of the properties from Theorem 2.4.3, we have shown that W
is a subspace of V. [ |
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In the final example of this section, we will use Theorem 2.4.8 to prove that
a set is a subspace by realizing it as the span of a set of vectors.

Example 2.4.9 Consider the following subset of R3:

2a+0b
A= 5b—%a a,beR
6a

This notation means that every given pair of real numbers a and b specifies an
element of A. For example, when ¢ = 1 and b = —1, we have (1, 712—1, 6) € A.

We will use Theorem 2.4.8 to prove that A is a subspace of R?. Any element
v € A can be written in the following way:

2a+0b 2 1
v= |5b— %a =a —% +b 1|5
6a 6 0
This proves that if
2 1
u = —% and uy = |5],
6 0

then A = Span{uj,us}. We conclude that A is a subspace of R?® by Theo-
rem 2.4.8. ]
Reading Questions

1. Let V be the vector space R? with the usual addition and scalar multipli-
cation. Let A be the following set:

A={(z,y) €R*| x>0 and y > 0}.

(We can identify A with the first quadrant in R2.) Determine whether or
not A is a subspace of V. Explain your answer.

2. Consider the vector space P and let A be the following set:
A = {polynomials in P, with even degree}.

Determine whether or not A is a subspace of P,. Explain your answer.

3. Let V be the vector space of all functions R — R. Let f and g be the
following functions:

f(t) =2t g(t) = cos(3t).
Let A = Span{f, g}. We know that A is a subspace of V' by Theorem 2.4.8.

Write down four distinct vectors in A.

Exercises

1. For each of the following, determine whether or not the subset W of
R3 is a subspace of R3. Explain your answers. (We are writing vectors
horizontally for convenience.)

(a) W ={(a,0,0) | a € R}
(b) W ={(a,b,c)|b=a+c}



CHAPTER 2. FIELDS AND VECTOR SPACES 56

() W=A{(a,1,0) | a,c € R}

(d) W ={(a,0,c) | a,c € R}
2.  For each of the following, determine whether or not the subset W of Pj is
a subspace of P3. Explain your answers.

(a) W = {at® +at | a € R}

(b) W = {at*> + bt +c| a,b,c € R}

(¢) W ={p € P5 | p has rational coefficients}
(d) W ={pe Ps|p(0) =0}

(e) W:{a3t3+a2t2+a1t+ao|a3+a2+a1+a0:0}

3. Let C0,10] be the vector space of continuous functions defined [0, 10] — R,
and let D|0, 10] be the set of differentiable functions defined [0,10] — R.
For each of the following, determine whether or not the subset W of

C'0,10] is a subspace of C[0,10]. Explain your answers.

(a) W={feC[0,10] | f(1) =0}
(b) W ={feC[0,10]| f(1) =1}
() W= {feD[0,10] | f'(1) =0}
(d) W ={feD[0,10] | (1) =1}
)

(e) W ={f € D|0,10] | f'(t) is constant}
4. For each of the following, determine whether or not the subset W of

R3 is a subspace of R3. Explain your answers. (We are writing vectors
horizontally for convenience.)

(a) W ={(2a —b,a+5b,—a) | a,b R}

(b) W ={(a+b,2b,ab) | a,b € R}

(¢) W={(a+b,b—c,a+2d)]|a,b,c,deR}
(d) W ={(2a —4b,5,3c+b) | a,b,c € R}

Writing Exercises

5. Let V denote the vector space of all functions R — R. (See Example 2.3.5
for the relevant definitions and operations.) Let a and b be real numbers
with @ < b, and let Cla,b] denote the set of all continuous functions
[a,b] — R. Prove that C[a,b] is a subspace of V.

6. Let a and b be real numbers with a < b. Show that the set of all functions
f € C[a,b] such that

/abf(ac)daczo

is a subspace of Cla,b]. (See Exercise 2.4.5 for the definition of Cla, b)].)

7. Prove that a line in R? is a subspace of R? if and only if the line passes
through the origin. (Note that all lines in R? can be written in the form
ax+by+c=0.)
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8.

10.

11.

Prove that a plane in R? is a subspace of R? if and only if the plane passes
through the origin. (Note that all planes in R? can be written in the form
ar+by+cz+d=0.)

Let V be a vector space and let W7 and W5 be subspaces of V. Must
W1 U Ws be a subspace of V7 Justify your answer.

Let V be a vector space and let W; and W5 be subspaces of V. Must
W1 N Ws be a subspace of V7 Justify your answer.

Let V be a vector space and let W; and W5 be subspaces of V. Define
the sum of W7 and Wy like this:

Wi + Wy = {v | v=w1 + wy for some w; € W7 and some wo € Wa}.

Must W7 + W5 be a subspace of V7 Justify your answer.



Chapter 3

Linear Transformations

3.1 Linear Transformations

Speaking broadly, mathematicians are often concerned about (mathematical)
objects and the right sort of functions between those objects. The structure
of specific objects can be illuminated by a look at the functions to and from
those objects. In linear algebra, the objects in view are vector spaces (see
Definition 2.3.1), and the functions between these objects are called linear
transformations.

3.1.1 Introduction to Linear Transformations

Definition 3.1.1 If V and W are vector spaces over a field F, then a func-
tion T': V' — W is called a linear transformation if both of the following
properties hold.

o Forallu,veV, we have T(u+v) =T(u) + T(v).
o Forall ve V and all ¢ € F, we have T'(cv) = ¢T'(v).

These functions are sometimes referred to as linear maps or linear operators.
If T:V — W is a linear transformation, then V is the domain of T" and
W is the codomain of T. O

Note 3.1.2 Many readers will be more familiar with the idea of the range of a
function than the codomain of a function. The range of a linear transformation
T:V — W is the set {T'(v) € W | v € V}. In words, the range is the subset
of the codomain consisting of the “outputs” of the function for all elements of
the domain. We will often use the term image when discussing the range of a
linear transformation.

Linear transformations are the “right” types of functions to study between
vector spaces because they preserve the primary vector space operations. The
first property of linear transformations means that such a function respects
vector addition, and the second property means that such a function respects
scalar multiplication.

Example 3.1.3 We consider the real vector spaces P; and Py, along with the
function D : Ps — P, which takes the derivative. That is, D(p) = p’ for all
p € Ps. So if p = 3t> — 2t3 4+ 10¢, then D(p) = 15t* — 6t + 10. We note that
p € Ps and D(p) € Py.

The fact that our function D is a linear transformation between these vector

58
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spaces is a consequence of calculus. For all differentiable functions f and g, and
all real numbers ¢, it is true that

[f+g'=f+d
[cf]" = cf".

(If the reader doubts or has forgotten these facts, the closest textbook on single-
variable calculus should be consulted posthaste.)

These calculus facts confirm that D(p+¢q) = D(p)+D(q) and D(cp) = c¢D(p)
for all p,q € P5 and all ¢ € R. This proves that D : P; — P, is a linear
transformation. |

Example 3.1.4 Let T : R? — R? be the function which reflects a vector in
the Cartesian plane across the z-axis. So T'(z,y) = (z, —y). Additionally, let
S : R? — R? be the function which rotates a vector counter-clockwise around
the origin by 7 radians. So S(z,y) = (—y,z). Then both T and S are linear
transformations.

We will supply two calculations here to give the sense of these functions.
The reader should note that T takes the vector (—3,2) in the second quadrant
and reflects it across the z-axis to the vector (—3,—2) in the third quadrant.
Also, S rotates the vector (—3,2) counter-clockwise around the origin by 7
radians to the vector (—2,—3). (It is fairly obvious that the length of the
vectors (—3,2) and (—2,—3) are the same. To check the claim about the
angles, one would calculate the angles between the positive x-axis and both
the vectors (—3,2) and (—2,—3). The first angle is roughly 2.55 radians and
the second is 4.12, giving a difference of 1.57 radians, or roughly 7.)

We first check the additivity condition. Let (x1,y1), (z2,%2) € R2. Then
we have

T((z1,91) + (22,92)) = T(21 + 22,91 + y2) = (¥1 + 22, —(y1 + Y2))
T(z1,91) + T(x2,92) = (1, —y1) + (22, —y2) = (T1 + T2, —y1 — Y2).

From the distributive property of the real numbers (in the second coordinate
of these calculations), we can see that the additive property holds for T. (The
calculation for S is similar.)

We now check the scalar multiplication property. (Again, the calculations
for T and S are similar, so we will only show one of them.) Let ¢ € R and let
(z,y) € R%. Then we have

S(e(x,y)) = S(ex, cy) = (—cy, cx)
cS(z,y) = c(—y,x) = (—cy, cx).

Note that we used the commutativity of multiplication in R in this calculation.
These brief calculations show that both 7" and S are linear transformations.
O

3.1.2 Linear Transformations and Matrices

While linear algebra is not only about matrices, matrices are valuable tools and
provide a rich source of examples in this subject. In fact, matrices are so central
to the notion of linear transformations that we will devote this subsection to
their discussion.

Example 3.1.5 Let F be a field and let A be an m X n matrix with entries
from F. (We will refer to this in what follows as “a matrix over F.”) Then
multiplication by A is a linear transformation from F"™ to F™. (We will denote
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the function which is multiplication by A by T4 : F* — F™.)

To justify this claim we must first explain what we mean by “multiplication
by A” We will let v € F”* and denote entry (4,7) in A by a;;. We will further
denote the entries of v by

U1

<
I

Un
Then the matrix-vector product Av is defined to be the following vector in
Fm™:
a11v1 + -+ A1pln
Av = 5 . (3.1)
Am1V1 + - + GmnUn

One way to state this is that entry j in Av is the sum of the entry-wise product
of row j in A with v. Since Av is an element of F"™, the domain and codomain
of T4 are correct.

What we have defined is the product of a matrix and a vector. However,
an alternate description of this product will be more useful in proving that T4
is a linear transformation.

If the columns of A are thought of as vectors ay,...,a,, then the product
Av is also
n
Av=wvia; + -+ +v,a, = Zviai. (3.2)
i=1

In words, Av is a linear combination of the columns of A with weights coming
from the entries of v. (We have reserved proving the equivalence of these two
formulations to Exercise 3.1.7.16.)

With this equivalent definition, proving that T4 is a linear transformation
is a snap. Let u and v be vectors in F™ and let ¢ € F. We will further denote
the entries of u and v by

U1 U1

Un, Un

Then we have the following:

n

Ta(u+v)=A(u+v)= Z(ul + v;)a;
i=1

Ta(u) +Ty(v) = Au+ Av = Zuiai + quiai.
i=1 i=1

These two expressions are equal due to the fact that F™ is a vector space.
We have one final calculation to prove that T4 is a linear transformation.
Let v be a vector in ™ and let ¢ be in F. Then we have

n

Ta(cv) = A(ev) = Z(cvi)ai
cTa(v) = cA(v) = CZ 0;8;.

Once again, thsse expressions are equal because F" is a vector space.
These calculations prove that T4 is a linear transformation. O
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Note 3.1.6 To summarize, when F is a field, multiplication by an m x n matrix
A is a linear transformation Ty : F* — F™.

General matrices are rectangular, not necessarily square. When a matrix
is square, however, we have additional properties to discuss.

Definition 3.1.7 Let A be an n X n matrix. (So A is square.) We say that A
is a diagonal matrix if a;; = 0 for all (¢, j) such that ¢ # j. If A is diagonal
and a;; =1 foralli=1,...,n, then A is called an identity matrix. %

Note 3.1.8 We often use the notation eq, ..., e, to refer to the columns of the
n X n identity matrix. In other words, e; is the vector with a 1 in entry j and
zeros elsewhere.

3.1.3 Properties of Linear Transformations

Recall that while linear transformations must have special properties, they
are first of all functions. And, as functions, properties like injectivity and
surjectivity can apply to linear transformations.

Definition 3.1.9 Let T : V' — W be a linear transformation between vector
spaces. We say that T is injective if T(vy) = T(v2) implies v = vq for
all vi,vy € V. Injective linear transformations are also referred to as one-to-
one since no two distinct elements of the domain may correspond to the same
element of the range.

A linear transformation T is called surjective if for every w € W there
exists a vector v € V such that T(v) = w. For surjective functions, the image/
range is the same as the codomain. (The range is a subset of the codomain for
every function, but these sets are equal if and only if the function is surjective.)
Sometimes surjective functions are referred to as onto functions.

If a linear transformation is both injective and surjective, we say that it is
bijective. O

Example 3.1.10 Let’s reconsider the linear transformation D : Ps — P, which
appeared in Example 3.1.3. We observe that D is surjective but not injective.

The transformation is surjective because we know about the antiderivative.
Let g € P, have the form

q(t) = agt* + ast® + ast® + a1t + ao.

This is a generic element of Py, so we only need to supply an element p € P;
such that D(p) = ¢, and this will prove that D is surjective. Consider the
element p defined as

p(t) = tast® + Fast* + Faot® + Jait® + aot.

It is but the work of a Calculus I student to verify that D(p) = ¢, thus showing
that D is surjective. (We note that we could have chosen p to have any constant
term at all; we used the constant term of 0.)

Finally, we will show that D is not injective by looking at an example of two
elements of Ps which have the same image under D in P;. Let p; = t>+10 and
pa = t2 +20. Then we see that even though p; # ps, we have D(p;) = D(p2),
and this proves that D is not injective. O

We will define one more property of linear transformations here that will
resurface in Section 3.2.

Definition 3.1.11 Let T : V — W be a linear transformation between vector
spaces. The identity transformation on V is the linear transformation Iy :
V — V which is Iy (v) = v for each v € V. (If the vector space we have in
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mind is clear, we will drop the subscript and use the notation I.)
We say that the linear transformation T is invertible if there exists a linear
transformation S : W — V such that SoT = Iy . O

3.1.4 Isomorphisms

Bijective functions are important in almost all settings, and the linear algebra
setting is no exception. We have a specific name for bijective linear transfor-
mations.

Definition 3.1.12 A bijective linear transformation T between vector spaces
V and W is called an isomorphism. If there exists an isomorphism between
vector spaces V and W, then these spaces are said to be isomorphic. %

The reader should think of isomorphic vector spaces as essentially the same.
Such spaces will not be exactly the same, of course, in the same way that two
finite sets of the same size are not necessarily identical. But the presence of an
isomorphism means that the vector space operations are compatible in such a
way that such spaces share many of the same properties.

Note 3.1.13 If V and W are vector spaces, then the set of all linear transfor-
mations from V' — W is denoted L(V,W). When W =V, we will write L(V)
instead of L(V,V).

We can now prove that two concepts we have defined in this section are
one and the same for linear transformations.

Proposition 3.1.14 Let V and W be vector spaces over F, and letT € L(V,W).
Then T is an isomorphism if and only if T is invertible.

Proof. This fact is true for functions without any of the linear transformation
properties being involved. (A function is bijective if and only if it has an
inverse.) |

Proposition 3.1.15 If T € L(V,W) is invertible, then T~ : W — V is also
a linear transformation.

Proof. We will check the two properties of a linear transformation. (See
Definition 3.1.1.) Suppose that wi,ws € W. Since T o T~ = Iy, we have

w1+ wo = T(T"H(wi1)) + T(T ™ (wa)) = T(T™H(w1) + T~ (w2)).

When we apply T~ to the beginning and end of this equality, using T~'oT =
Iy, we get
Tﬁl(Wl + Wg) = Tﬁl(wl) + Tﬁl(Wg).

We will now check the scalar multiple property in a similar fashion. Let w € W
and let ¢ € F. Then we have

ew = cT(T Y (w)) = T(cT ™ (w)).
Applying T~! to both sides again we get
T (ew) = T H(w).

This proves that T- € L(W, V). [ |
Before we leave this subsection, it is worth pointing out that when V' and

W are vector spaces, the set L(V, W) itself has some important structure.
When V and W are vector spaces over F, we can define the sum and scalar

multiple of linear transformations since both of these operations happen on
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the level of elements. If S,T € L(V,W) and ¢ € I, then we define S + T and
cT in the following way. For all v e V|

e (S+T)(v)=S8(v)+T(v), and
o (T)(v) =T (v).

These operations as defined make L(V,W) into its own vector space. We
will leave the proof of this theorem for the exercises.

Theorem 3.1.16 Let V and W be vector spaces over a field F, and let S,T €
L(V,W) and c € F. Then S+ T and ¢T' are both linear transformations from
V to W, and L(V,W) is a vector space with these operations.

3.1.5 The Matrix-Vector Form of a Linear System

Having defined the product of a matrix and a vector in Example 3.1.5, we can
reformulate one of the foundational (and introductory) matters of this book.
We will now put the notion of a linear system—in particular, the solutions to
linear systems—in a different context.

Let’s consider the following system of linear equations over a field F, as we
saw in Section 2.2:

1121 + -+ a1pTn = by

a21%1 + -+ + G2pTy = by

Am1T1 + -+ Oy Tn = bm

If we let A be the matrix A = [a;;], x be the vector of variables x = [z;], and
b be the vector of constants b = [b;], then this linear system can be written
efficiently as Ax = b.

With this reformulation, the questions of the existence and uniqueness of
solutions to a system of equations (see the end of Section 1.1) can now be stated
in the language of the injectivity and surjectivity of linear transformations.

Example 3.1.17 Consider the linear transformation T4 : R3 — R3 which is
multiplication by this matrix:

2 3 2
A=1]1 -2 8
-1 4 -12

We will show that T4 is neither injective nor surjective.
Let u and v be the following vectors in R?:

-1 7
u= |-2|, v=|0
3 2

By forming and row-reducing the augmented matrices [A | u] and [A | v], we
can determine how many solutions there are to the equations T4 (x) = u and
Ta(x) = v, respectively. Here are the calculations:

10
[Alu]~ |0 1 —=2|0], (3.3)
00 1
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10 4|2
[A|v]~]0 1 —2|1|. (3.4)
00 010

From (3.3), since there is a pivot in the final column of the RREF of [A | u],
we see that u is not in the image of T4. This means that the matrix equation
Ax = u has no solution, so T4 is not surjective; equivalently, the linear system
which corresponds to the augmented matrix [A | u] is inconsistent.

From (3.4), we see that v is in the image of T'4. Since there is no pivot in
the final column of the RREF of [A | v], and since there is a free variable in
that same RREF, this means that the matrix equation Ax = v has multiple
solutions, so T4 is not injective. Specifically, if

2 -2
x;= 11|, and xo= | 3 |,
0 1

then we have both Ty (x1) = v and T4(x2) = v. (The vector x; results from
setting the free variable equal to 0, and we obtain x5 by setting the free variable
equal to 1.) Finally, we note that the linear system which corresponds to the
augmented matrix [A | v] is consistent with many solutions—that is, a solution
is not unique. O

3.1.6 Reading Questions

1. For each of the following, determine the number of rows and columns that
a matrix would have if multiplication by that matrix is a linear transfor-
mation with the given domain and codomain.

(a) domain: R?, codomain: R3

(b) domain: Q*, codomain: Q2
2. Let A, u, b, and ¢ be defined as follows:
2
1

0 6 3
A= 3 6|, u=|[-2[, b=1|6|, c=|—4
5 2 6

-1 -1
Define a linear transformation T4 : R? — R3 to be multiplication by A.
(a) Find T (u).
(b) Find an x in R? such that T4 (x) = b.

(c) Is there more than one x whose image under T4 is b? How do you
know?

(d) Determine whether or not ¢ is in the range of T4.

3.1.7 Exercises
1. Consider the function T': P, — P5 defined by T'(p) = tp. (So, for example,
T(2+t) =2t+t2) Is T a linear transformation? Justify your answer.

2. Consider the function T : Py — Py defined by T'(p) = p(0) +p(1)t+p(2)t>.
Is T a linear transformation? Justify your answer.
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3.

Consider the function T : P, — Py defined by T'(p) = p(0) +p’'(0)t. Is T
a linear transformation? Justify your answer.

Let T : F — F2 be the function defined by T'(x,y, z) = (3x+y — 22, —ay).
Is T a linear transformation? Justify your answer.

Let T : R? — R? be the function defined by T'(x,y) = (2x,z — 3y,0). Is
T a linear transformation? Justify your answer.

Consider the following matrix over Fs:
2 1 1
A=10 1 2
1 2 2

For each of the following vectors v, calculate the matrix-vector product

Av.

(a) v=(1,1,0)
(b) V= (2, 1,2)
(¢) v=1(0,2,1)

Consider the following matrix over R:

-1 2 3
A‘[—z 5 0]

(a) If T is the linear transformation which is multiplication by A, what
are the domain and codomain of 77

(b) Calculate the image of the vector v = (—3,1,4) under the linear
transformation 7.

(c) Is the vector w = (=2, —1) in the image of T? Explain your answer.

Let A be the following matrix over R:

3 =2
A=]1 4
-1 0

Let T be the linear transformation which is multiplication by A.
(a) Is the vector (1,1, 1) in the image of T? Explain your answer.

(b) Is T surjective? Explain your answer.

Let A be the following matrix over Fr:
2 0 4
A=14 3 5
5 1 2
Let T be the linear transformation which is multiplication by A.

(a) Is the vector (3,1, 1) in the image of T? Explain your answer.

(b) The vector w = (5,4,0) is in the image of 7. Find one x € F3 such
that T'(x) = w.

(c) Is there more than one x € F2 such that T'(x) = w? How do you
know?
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(d) Is T injective? Is T surjective? Explain your answers.

10. Let T : R? — R? be the linear transformation which is multiplication by
the following matrix:
= [4 —2 0}

3 2 3

Give a description of all vectors x € R? such that T'(x) = 0.
Writing Exercises

11. Define the function T : C[0,00) — C[0,00) to be the following:

(T(f))(x) = / " 1) dy.

Prove that T is a linear transformation.
12. Let T:U — V and S : V — W be linear transformations between vector
spaces over a field F. Prove that S o T is also a linear transformation.
13. LetT:U — V and S: V — W be linear transformations between vector
spaces over a field F.

(a) Prove that if S o T is injective, then T' must be injective.

(b) Prove that if S o T is surjective, then S must be surjective.

14. Let T : V — W be a function between vector spaces over F.

(a) If T is a linear transformation, must it be true that T'(0y) = Oy ?
Either prove this is true or produce a counterexample.

(b) If T(0y) = Oy, must T be a linear transformation? Either prove
this is true or produce a counterexample.

15. Let vq,...,v,, be vectors which span a vector space V. If T: V — V is a
linear transformation for which T'(v;) = 0 for all i = 1,...,m, prove that
T is the zero transformation. (In other words, prove that T'(x) = 0 for all
xeV)

16. Let A be an m X n matrix over a field F, and let v be a vector in F".
Prove that the formulations of the matrix-vector product given in (3.1)
and (3.2) are equivalent.

17. Prove Theorem 3.1.16.

3.2 The Matrix of a Linear Transformation

As we saw in the previous section, linear transformations can be defined using
matrices and they can also be defined with no matrices in sight. In this section
we will see that, for a certain class of linear transformations, there is always a
matriz in sight.

3.2.1 Constructing the Matrix

Our claim might seem fanciful at first. Can every linear transformation be
realized using a matriz? The surprising answer is yes, for a specific kind of
linear transformation.
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We first make an observation related to the definition of the matrix-vector
product in Example 3.1.5.

Note 3.2.1 If A is an m X n matrix with columns ay,...,a,, and if we recall
the definition of e; from Note 3.1.8, then

A(ej) = aj.

The truth of this equality comes by thinking of A(e;) in the way expressed in
(3.2), as a linear combination of the columns of A with weights from the entries
in ej.

We now suppose that F is a field and that 7' : F* — F™ is a linear trans-
formation. We claim that there is a unique m x n matrix A such that for
every v € F", T(v) = Av. In other words, we claim that the work of the linear
transformation 7" can be carried out through multiplication by A.

We will define the matrix A which does the job. For each j = 1,...,n,
define the vector a; by a; = T'(e;). We then define A as the matrix with
columns ag, ..., a,.

Since any vector v € F™, written as v = [v;], has the property that

n
vV = E vjej,
Jj=1

we can verify that the action of T is the same as the action of multiplication
by A:

T(v)=T Zvjej = Zva(ej) = Zvjaj = Av.
j=1 j=1 j=1

Note that we used the fact that 7" is a linear transformation in this last string
of equalities.
We have just proved the following theorem.

Theorem 3.2.2 If T : F™ — F™ is a linear transformation, then there exists
a unique m X n matriz A over F such that T'(v) = Av for all v e F™.

A scrupulous reader may protest our use of the word “unique” in the state-
ment of this theorem. Here is the argument concerning uniqueness. If the
theorem is true, then (for this theorem) there is only one way it could possibly
work. If a matrix A exists, it must have the property that Ae; = T'(e;) for all
j. Since we have shown that such a construction does work, the matrix A we
obtain must be unique.

This theorem is quite powerful. We will demonstrate that power through
two examples that find their origin in Section 3.1.

Example 3.2.3 We take our notation from Example 3.1.4. Let T : R? — R? be
the linear transformation which reflects a vector in the Cartesian plane across
the z-axis, and let S : R2 — R? be the linear transformation which rotates a
vector counter-clockwise around the origin by 7 radians. In this example we
will find the 2 x 2 matrices A and B such that T'(v) = Av and S(v) = Bv for
all v € R2.

In the proof of Theorem 3.2.2, we saw that the way to form the matrix of
a linear transformation is to calculate the image of the vectors eq,...,e,. In
this context, we need to calculate the image of e; and e under 7" and S.

The calculations we seek are below:

T(er) = H T(es) = [_OJ . S(e1) = m . S(es) = [_01} .
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This tells us that the matrices A and B are as follows:
1 0 0 -1
T A
Any curious reader can check that these matrices are correct by choosing a

vector in R? and multiplying by A and by B separately. The results should
align with the actions of T" and S, respectively. ]

3.2.2 Composition and Matrix Multiplication

Since linear transformations are functions, we can compose them with other
linear transformations. In order for this to make sense, we need to have the
codomains and domains match up correctly.

IfT:U—Vand S:V — W are linear transformations between vector
spaces, then we can define the function SoT : U — W by (SoT)(u) = S(T'(u))
for each u € U. Note that such a definition is only possible when the codomain
of T is the same as the domain of S. It is not difficult to show that SoT is a
linear transformation. (See Exercise 3.1.7.12.)

IfU =F" V =F™, and W = FP, then the linear transformation S o T is
defined F"* — FP, and Theorem 3.2.2 says that there is a unique matrix over F
which carries out this linear transformation. What is that matrix?

Theorem 3.2.2 tells us that there are matrices A and B such that the
transformations T' and S are multiplication by B and A, respectively. The
matrix B is m x n and A is p x m. We will define the product of A and B so
that the matrix of S o T is the matrix product AB.

Definition 3.2.4 Let A be a p x m matrix over a field F and let B be an m xn
matrix over F. Then the matrix product AB is the unique p X n matrix over
F such that for all u € F",

A(Bu) = (AB)u.

O

Note 3.2.5 When we take the matrix product AB, the number of columns
of A must match the number of rows of B. The matrix product makes no
sense (and cannot be computed) otherwise. The matrix AB then has the same
number of rows as A and the same number of columns as B.

Though we have defined matrix multiplication in terms of the composition
of linear transformations, we can multiply matrices of the correct dimensions
even when we have no specific linear transformations in mind. This is similar
to our understanding of row-reducing a matrix—this arose in the context of
solving linear systems, but the process can be carried out on any matrix.

We have defined matrix multiplication, but we have not specified how the
entries in the matrix product are calculated. Fear not; the wait is over.

We will use the definition of matrix multiplication and the formula we have
for the product of a matrix and a vector (see (3.1)). Since (AB)u is a vector,
we will record a formula for entry 7 in this vector. In what follows, we assume
A = [a;;] and the entries of B = [b;;]; we also assume u = [u]:
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When we look again at the formula in (3.1) for the product of a matrix and
a vector, we see that

m
[ABlij = aibu; (3.5)
k=1
forall 1 <i<pandalll<j<n. Inwords, this means that the (4, j)-entry
of AB is the entry-wise product of row i in A with column j in B. (Later we
will acknowledge this as the dot product of two vectors in F™.)
We will try to make this concrete with some examples.

Example 3.2.6 Let A and B be the following matrices over R:

2 —1 -2 0
f] el
Note that the product AB makes sense since the number of columns of A is
the same as the number of rows of B. Here is the matrix product:

2(-2) —1(1) 2(0)1(3@ ::[5 3 }.

21
AB:E@m+qn3mH4@a o 12

Since the sizes of A and B allow it, we can also calculate BA in this example:

-4 2
pa=|Ty 3y

Finally, we observe that AB # BA. O
Example 3.2.7 Let A and B be the following matrices over Fs:

40
A= |1 4], B:ﬁ ﬂ.
30

Since A is 3 x 2 and B is 2 x 2, we can calculate AB, which will be 3 x 2. (In
this example we cannot calculate BA.) Here is the matrix product:

4(3) +0(4) 4(3)+0(2) 2 2
AB = |1(3)+4(4) 13)+4(2)| =14 1
3(3)4+0(4) 3(3)+0(2) 4 4
To obtain the last equality, we remember that we are working in Fs5. (I

Since we defined matrix multiplication in the context of the composition of
linear transformations, our next example picks up on this theme.

Example 3.2.8 We return to Example 3.2.3 and consider the linear trans-
formations S,T : R? — R2, where T reflects a vector in the Cartesian plane
across the z-axis and S rotates a vector counter-clockwise around the origin
by % radians. In the previous example, we calculated the matrices A and B
for T and S, respectively. What is the matrix for S o T?

We have defined matrix multiplication to answer exactly this question. We
only need to multiply the matrices in the proper order. The matrix for S o T

is
0 —1|(1 o0 0 1
e | AR R
A related question in this context is whether or not linear transformations

commute. In other words, is S oT =T o S? For this example, answering that
question boils down to comparing the matrix product AB with the product
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BA which we have just calculated:
1 0|0 -1 0 -1
S R
From this we can see that SoT and T'o.S are two distinct linear transformations.
|
As we start to deal more regularly with matrices in the context of linear
transformations, we need to recall the notation M, ,(F) and M, (F) from
Example 2.3.10.
The next theorem records some facts about matrix multiplication which

will be useful later in the text. We will walk the reader through the proof of
this theorem in the exercises at the end of this section.

Theorem 3.2.9 Let A, A1, Ay € My, »(F), B,B1,By € M, ,(F), and C €
M, 4(F). Then

1. A(BC) = (AB)C,
2. A(Bl + BQ) = ABl + ABQ, and

3. (A1 + A2)B=A1B+ AsB.

This theorem says that, if all of the matrix products make sense, matrix
multiplication is associative and obeys both of the distributive laws.

There is one other useful way to think about matrix multiplication—in
terms of the columns of the matrix.

Proposition 3.2.10 Let A € M,, ,(F), B € M, ,(F), and let the columns of
B be by,...,b,. Then the columns of AB are Aby, ..., Ab,.

Proof. By our definition of the matrix product, for each j =1,...,p we have
(AB)e; = A(Be;).
The observation in Note 3.2.1 means that Be; = b;, so we have
(AB)e; = Ab;.

Since (AB)e; is the jth column of AB, this proves the proposition. |

From the understanding we developed in Example 3.1.5, this proposition
means that every column of the matrix product AB is a linear combination of
the columns of A, when the product AB is defined.

3.2.3 Invertible Matrices

With matrix multiplication defined in terms of the composition of linear trans-
formations, we turn to a specific composition in this subsection. Specifically,
we will think about matrices for linear transformations S and 7" when S o T is
the identity transformation.

In Definition 3.1.11, we called such linear transformations invertible. When
such a linear transformation can be accomplished by matrix multiplication, we
will refer to the connected matrix using this same term.

Definition 3.2.11 Let A € M,,(F). The matrix B is an inverse matrix for A
if
AB=BA=1,.

If a matrix A has an inverse, we say that A is invertible or non-singular.
If A is a matrix for which no inverse matrix exists, we say that A is singular
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or not invertible. O
It may strike the reader as strange that only square matrices have a chance
at being invertible—we have only defined invertibility for square matrices.
There is a good reason for this, which we will explore in the exercises.
If we know an inverse B of a matrix A, then we can solve matrix-vector
equations with ease:

Ax =y
B(Ax) = By
(BA)x = By

Ix = By

x = By.

The next three propositions present some properties of matrix inverses.

Proposition 3.2.12 If a matric A € M, (F) has an inverse, that inverse is
unique.

Proof. Let A € M, (F) and suppose that both B,C € M, (F) are inverses for
A. Then we have

B = BI,, = B(AC) = (BA)C = I,C = C.

|
This proposition allows us to refer to the inverse of a matrix A and to use
the notation A~! for that matrix.

Proposition 3.2.13 Suppose that A, B € M, (F) are both invertible. Then
AB is invertible as well and
(AB)™' =B~1A~L

Proof. If A and B are both invertible, then both A~! and B~! exist. Since
matrix multiplication is associative, the following calculations show that the
matrix B~'A~! satisfies the properties of the inverse of AB, thereby making
AB invertible:

(AB)(B™'A ™YY = A(BB YA ™' = A(I,)A™' = AA™' = I,,;
(B'AY)(AB)=B '(A*AB=B"'(1,)B=B'B=1,.
[

This final proposition states what may seem like an obvious fact, but which
should still be justified. That justification is left to the exercises.

Proposition 3.2.14 Let A € M,,(F) be invertible. Then A~ is also invertible
and (A=1)~t = A.

While we are not yet ready to calculate the inverse of a matrix (stay tuned!),
we can provide examples of invertible matrices and their inverses.

Example 3.2.15 Consider the following matrix A € Ms(R):

3 5
-] 2]

We can verify that A~ is
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by computing the product in both orders and verifying that the result is I in
both cases.
Similarly, here is a 3 x 3 matrix over F3 which is invertible:

B=

—_ O =
N DN DN

1
0
0

The reader is encouraged to verify that the following matrix satisfies the prop-
erties of the inverse of B:

0 2 1
B '=10 2 0
1 0 2

3.2.4 The Transpose of a Matrix

The transpose of a matrix is useful notation for some formulas that will appear
later.

Definition 3.2.16 If A € M,, ,,(F), then the transpose of 4, denoted AT is
the element of M, ,,(F) whose rows are the columns of A. In other words,

[AT]i; = [Alji

foralll<i<nandall<j<m. O

Note 3.2.17 The transpose is an easy way to turn a column vector into a row
vector and vice versa.

Example 3.2.18 If A is the 2 x 3 matrix
2 -1 0
A= [2 4 5] ’

then AT is the 3 x 2 matrix

2 -2
AT =1-1 4
0 5

O
Some matrices are unaffected by taking the transpose. These deserve a
special designation!

Definition 3.2.19 A matrix which is equal to its own transpose is called a
symmetric matrix. (All symmetric matrices must be square by necessity.)

O

The following theorem collects some properties related to the transpose of
a matrix.

Theorem 3.2.20 Let A,C € M, ,,(F), let B € M, ,(F), and let k € F. Then
the following properties hold:
1. (AT = A;

2. (A+0)T' = AT +C7;
3. (kA)T = kAT; and
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4. (AB)T = BT AT,

Proof. The first three parts of this theorem are immediate from the definitions
and require no proof. To prove the fourth part, we will compare the (7, j)-entry
of both (AB)T and BT AT. First, from the definition of the transpose and (3.5)
we see that

[(AB")];j = [AB);; = Xn:ajkbki-
k=1

To compare, entry (i, j) of BT AT is

n n

T AT, )

[B* A%, E [BT)ix[AT]x; = g briaj.
k=1 k=1

Since multiplication is commutative in fields, these two expressions are equal.
]

Note 3.2.21 While it might be more aesthetically pleasing if we did not have
to switch the order of the multiplication when taking the transpose of a prod-
uct, this type of formula makes sense when considering the dimensions of the
matrices involved. If A is m x n and B is n x p, then the expression AT BT
wouldn’t even make sense unless m = p. Further, reversing the order in a
formula involving matrix multiplication is typical, as we have already seen in
Proposition 3.2.13.

3.2.5 Reading Questions

1. Let T : R? — R2 be the linear transformation which is rotation clock-

wise around the origin by 7 radians. Find the matrix for 7. (Refer to
Example 3.2.3.) Explain your process.

2. Consider the following two matrices A and B over R:

0 3
A=|5 -1, B:[‘O3 J _41].
1 -3

Calculate both AB and BA.
3.  Write down a 3 x 3 matrix over Fs which is symmetric. (See Defini-
tion 3.2.19.)

3.2.6 Exercises

1. Let A, B, and C be the following matrices over R:

0 4 1
A:[_Q1 _02 ;} B:B _13] C=1(3 2 -2
4 -3 3

For each of the following, determine whether the given calculation makes
sense. If it does, find the requested matrix. (Do this by hand, without
technology.) If it doesn’t make sense, explain why it doesn’t.

(a) A2
(b) AB
(c) AC
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(d) BC
(e) BA
(f) B

Let T : R? — R? be the linear transformation which reflects a vector
across the line y = z. Find the matrix for T'.

Let T : R? — R? be the linear transformation which projects a vector
onto the line y = z. Find the matrix for T

Let T : R? — R? be the linear transformation which projects a vector
onto the line y = —z. Find the matrix for T'.

Let T : R? — R? be the linear transformation which rotates a vector
counter-clockwise around the origin by an angle of 6 radians. Find the
matrix for T. (Each entry in the matrix should be an expression involving
6.)

Writing Exercises

10.

11.

Let A € M,(F) be invertible. Prove that AT is invertible and that
(AT)fl — (Afl)T'
Let A € M, »(F).

(a) Suppose that A is left-invertible, meaning that there is an n x m
matrix B such that BA = I,,. Prove that m > n.

(b) Suppose that A is right-invertible, meaning that there is an n xm
matrix B such that AB = I,,,. Prove that m <n.

(c) Prove that any A which is invertible must be a square matrix.
Prove Proposition 3.2.14.

In fields, we have the cancellation law for multiplication. If ab = ac and
a # 0, then b = ¢. Does matrix multiplication have this property?

Let A, B, and C be matrices over F such that AB and AC make sense
and are the same size and A is not the zero matrix. If AB = AC, must
it be true that B = C? Either prove this is true or provide a counter-
example.

In fields, multiplication has the no zero divisors property. If zy = 0, then
either x = 0 or y = 0. Does matrix multiplication have this property?

Let A and B be matrices over F such that AB makes sense. Let Z
be the matrix of the same size as AB consisting of all zeros. If AB = Z,
must it be true that either A or B is a matrix of all zeros? Either prove
this is true or provide a counter-example.

Let A € M3(F5) be of the form
a 0
A=l
(a) What conditions must a, b, and ¢ satisfy so that A% = I5?

(b) How many matrices in My (F5) of this form have the property that
A% =17
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3.3 Inverting a Matrix

In Section 3.2, we introduced the definition of an invertible matriz and dis-
cussed some properties of the inverse of a matrix. We will now introduce a
method to determine whether or not a matrix is invertible. Additionally, when
a matrix is invertible we will be able to calculate its inverse.

3.3.1 Elementary Matrices
The method we will present in this section begins with a simple definition.

Definition 3.3.1 An elementary matrix is one that is formed by performing
a single elementary row operation on an identity matrix. O

Because elementary matrices are related to elementary row operations,
there are three types of elementary matrices. The following example provides
one elementary matrix of each type.

Example 3.3.2 Our first elementary matrix results from switching the second
and third rows in I3:

O O =
= O O
o = O

Next we will look at a matrix which comes about by adding 4 times the first
row of Iy to the second row:

10

il 5

Finally, we have a matrix which is formed by multiplying the second row of I
by 7:

1.0 00
0 7 00
0 010
0 0 01

O

Multiplying by an elementary matrix has the effect of carrying out an el-

ementary row operation. In other words, if the n x n matrix E results from

applying an elementary row operation to I, and if A is another n x n matrix,

then E'A is the matrix A after this same elementary row operation has been

applied. We will demonstrate this in an example before stating the relevant
theorem. (The proof of the theorem is saved for the exercises.)

Example 3.3.3 Let A be the following matrix over R:
-2 1
[y
If we label as E the matrix in (3.6), then we can calculate EA:
1 0]|-2 1 -2 1
EA[ZL 1}{3 2}[—5 6]'

The reader can verify that F'A is the result of adding four times the first row
of A to the second row of A. O

Theorem 3.3.4 If the elementary matriz E results from performing an ele-
mentary row operation on I,, and if A is an n X n matriz, then EA is the
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matrix that results from applying this same elementary row operation to A.

Each elementary row operation is “reversible” in the sense that there is
another elementary row operation which reverses the work that was done by
the first. (This appears as Exercise 1.2.9.) We can use this fact to establish
the following useful proposition.

Proposition 3.3.5 Fvery elementary matriz is invertible.

Proof. Let E be an elementary matrix and let £’ denote the elementary ma-
trix which represents the reverse elementary row operation from E. By the
definition of these matrices and Theorem 3.3.4, we see that

EE' =1,, and E'E =1,.

This shows that E and E’ are inverses of each other and, in particular, this
proves that F is invertible. |

We will now connect elementary matrices to the RREF of a matrix in the
following proposition. This is largely a restatement of Algorithm 1.2.12 using
elementary matrices.

Proposition 3.3.6 If A € M,, ,,(F), then there exists B € M,, ,,(F) in RREF
and elementary matrices E1,. .., Ey € M,,(F) such that
A=E, - E.B.

Proof. Since each matrix can be reduced to a matrix in RREF, and since
elementary row operations are accomplished by multiplying by elementary ma-
trices, there exist elementary matrices D1,..., Dy € M,,(F) such that

B=Dy---DA.

Since elementary matrices are invertible, by repeated application of Proposi-
tion 3.2.13 we see that Dy, - - - Dy is invertible and (Dy, - -- Dy) ™! = Dl_1 e D,:l.
Then we have

B = (Dy-+-D1)A
(Dy---D1) '*B = (Dy---D;) Y (Dy---D1)A
D' D 'B=A.

We note that each D !is an elementary matrix, and if we define E; = D; !
for each i = 1,..., k, we have our result. |

3.3.2 Finding the Inverse of a Matrix

We will now move on to develop an algorithm for finding the inverse of a matrix
(when one exists). We need a lemma before stating our most important result
of the section.

Lemma 3.3.7 If A € M, () is invertible, then for every b € F™, the equation
Ax = b has a unique solution.

Proof. Let b be any vector in F”. Since A is invertible, A~! exists, and we can
show that x = A~'b is a solution to the equation Ax = b:

A(A™'D) = (AA b =I,b=b.
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To show that this solution is unique, suppose v is another solution to this
equation, so Av =b. Then we have

Av=Db
A N Av)=A""b
(A'A)v=A""p
I,v=A"b
v=A"1b.

Theorem 3.3.8 A matriz A € M, (F) is invertible if and only if A is row equiv-
alent to I,,. When A is invertible, any sequence of elementary row operations
that reduces A to I, also transforms I, into A~1.

Proof. 1f A is invertible, then by Lemma 3.3.7 the equation Ax = b has a
unique solution for every b € F"”. Now Theorem 1.3.6 means that the RREF
of A has a pivot in each of its n columns. Since A is square, this means the
RREF has a pivot in each row as well, meaning that the RREF of A must be
I,.

Conversely, suppose that A is row equivalent to I,,. By Proposition 3.3.6, there
exist elementary matrices E1, ..., Fy such that

A=E - El,. (3.7)

This means that A = F1 - - - E}, and since the product of invertible matrices is
invertible, this proves that A is invertible.
If we multiply both sides of (3.7) by (Ey--- Ex)~ !, we get

E;tE'A=1,,

which shows the sequence of elementary row operations (through multiplication
by elementary matrices) used to transform A into I,,. On the other hand, if we
take the equation A = Fj - -- Ej, from the previous paragraph and invert both
sides, we get

A4-1 = Ek—l'“El—l7

which we can easily adjust to
- -1 -1
At =E" BT,

This establishes the final claim in the theorem. |
This theorem provides an algorithm for us to determine when a matrix is
invertible and, in the case it is invertible, to calculate its inverse.

Algorithm 3.3.9 In order to determine whether or not a matriz A € M, (F)
1s invertible, follow these steps.

1. Reduce the matriz [A | I,,] to its RREF.
2. If the RREF has the form [I,, | B), then A is invertible and B = A~'.

3. Ifthe RREF does not have I,, in its left n columns, then A is not invertible.

We will end this section with several examples in which we work through
this algorithm.
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Example 3.3.10 Consider the following matrix A € M3(R):

2 0 -3
A=1|1 -1 -2
0 3 2

To determine whether or not this matrix is invertible, we row reduce the matrix
[A | I5]:

2 0 =-3|1 0 O 1 0 0—-4 9 3
1 -1 -2/0 1 0|~|0 1 0 2 -4 -1
0 3 2 10 0 1 0 0 1|-3 6 2
We see that A is invertible and that
—4 9 3
Al =12 —4 -1
-3 6 2

Example 3.3.11 Consider the following matrix A € My(Q):

2 3 0 1
1 1 -3 7
0 -2 1 0
-1 -4 2 =2

A:

We now row reduce [A | I4] to determine whether or not A is invertible. We
find that [A | 1] is row equivalent to

1 00 210 0 2 -1

010 -1({0 -1/5 -1/5 -1/5

0 01 —-2]0 —-2/5 3/5 —2/5

000 o011 35 -175 13/5
This calculation shows that A is not invertible. O
Example 3.3.12 Consider the following matrix A € Ms(F3):

A= B (2)} .
We now row reduce [A | Io]:
[1 2|1 O]NF 0]0 2}
2 0]0 1 0 12 2|°
This proves that A is invertible and that

4 [o 2
A [2 2}
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3.3.3 Reading Questions

1. Consider the following matrix defined over R:

2 1
A= [_1 _J .
Write down elementary matrices E1, . .., F, which reduce A to I5. In other
words, find elementary matrices Fy, ..., FE, such that I, = E,, --- E1 A.

2. Consider the following matrix defined over Fj5:
4 0 4
A=1(3 3 1
1 0 3
Determine whether or not A is invertible. Explain your answer. If A is
invertible, find the inverse.
3.3.4 Exercises

1. For each of the following matrices A, find the RREF of A (call it B), and
elementary matrices E1, ..., Ey such that B = Fy --- E1 A.

(a) Ac M273(R)2

(b) A€ My(Fs):
-f
‘4:[£3i 2—%4

2. For each of the following matrices A, find the RREF of A (call it B), and
elementary matrices E1,..., Ey such that B = Ey --- E1 A.

(c) A€ My(C):

(a) A€ Ms(R):

3 2 =2
A=112 =3 1
-2 =2 0
(b) A€ Ms(Fs):
1 1 2
A=11 1 1
0 1 1

3. For each of the following matrices A in M3(R), determine whether or not
A is invertible using the algorithm from this section. In the cases where
A is invertible, find the inverse.

-5 =5 20

(a) A=|4 —4 32
0 -1 6
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-1 -1 -6
(b)y A=]-3 0 -5
3 6 5
4. For each of the following matrices A in M3(F5), determine whether or not

A is invertible using the algorithm from this section. In the cases where
A is invertible, find the inverse.

4 3 0
(a) A=12 3 1
2 4 3
[0 3 4]
by A=14 0 4
4 3 3

5. Use an inverse matrix to solve the following linear system over Fj:

r+2y=1
T+y=2

6. Use an inverse matrix to solve the following linear system over Fs:

20 +4y =1
r+ 3y =4.

7. Use an inverse matrix to solve the following linear system over R:

—Adr4+2y+4z=1
—2r+y—6z= -2
—3r—y+2z=3.

Writing Exercises

8. Suppose AB = AC, where A is an n X n matrix and B and C are n X p
matrices.

(a) Show that if A is invertible, then B = C.

(b) Provide an example where AB = AC but A is not invertible and
B#C.
9. Suppose that (B —C)D = 0, where B and C are m x n matrices, D is an
n X n matrix, and 0 is the m x n zero matrix.

(a) Show that if D is invertible, then B = C.

(b) Provide an example where (B — C)D = 0 but D is not invertible
and B # C.
10. Suppose that A and B are n xn matrices and that AB is invertible. Prove
that A is invertible.
11. Suppose that A € M, (F) is upper triangular and invertible. (A matrix is
upper triangular when all entries below the main diagonal are 0.) Prove
that A~ is also upper triangular.

12. How many matrices in My(F5) are invertible? What proportion of the
matrices in Ms(FFy) are invertible?
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13. How many matrices in My(F3) are invertible? What proportion of the
matrices in Ms(F3) are invertible?

14. Prove Theorem 3.3.4. (You will need three cases.)

3.4 Subspaces and Linear Transformations

Every linear transformation between vector spaces brings with it some descrip-
tions of related subspaces of the domain and codomain. We will explore some
of these subspaces in this section.

3.4.1 The Kernel of a Linear Transformation

The kernel of a linear transformation T is the set of all vectors that 1" sends
to the zero vector.

Definition 3.4.1 If T : V — W is a linear transformation between vector
spaces, then the kernel of T' is the set

ker(T) ={ve V |T(v) = 0}.

O

While it may seem strange to single out the vectors that are sent to 0, this
set reveals a lot about T

Theorem 3.4.2 Let T : V — W be a linear transformation. Then ker(T) is a
subspace of V.

Proof. We will prove this theorem using the criteria for a subspace spelled out
in Theorem 2.4.3. Since T(0y) = Oy, we have 0y € ker(T). (The fact that
T(0y) = Oy is found in Exercise 3.1.7.14.)

Let vy, ve € ker(T'). Using the additive property of T and the fact that these
vectors are in the kernel, we have

T(Vl + VQ) = T(Vl) + T(VQ) = OW + OW = OW
Finally, we let v € ker(T) and k € F. Then we have
T(kV) = kT(V) = kOW = Ow.

This calculation used the fact that v was assumed to be in the kernel and the
scalar multiplication property of T. |

Example 3.4.3 Let V = Dja, b] be the set of all differentiable functions from
[a,b) = R. Let T : V — V be the linear transformation which takes the
derivative. (We proved a very similar function was a linear transformation in
Example 3.1.3.) What is the kernel of T'?

We recall from calculus that a function f has f'(z) = 0 for all z in an
interval if and only if f is a constant function. This proves that ker(T) is the
set of all constant functions, and it further establishes that set as a subspace
of Dla,b]. O

While not all linear transformations are linked to matrices, some are. The
kernel has an alternate name in those situations.

Definition 3.4.4 If A € M,, ,,(IF), then the null space of A is
null(A) = {ve F" | Av = 0}.
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Since we have shown that the kernel is a subspace, the word “space” in the
term null space is justified.

We also recall the link between matrix-vector equations like Ax = b and
linear systems. The definition of the null space shows that the set of solutions
to a homogeneous linear system can be described as the null space of a matrix.

Example 3.4.5 Let A be the matrix

3 1 -3
A=|-1 0 2
2 -2 -10

We can find null(A4) by row reducing the matrix [A | 0]. Here is the RREF:

1 0 —-21|0
01 310
00 010
From this we see that x1 = 2x3, zo = —3x3, and x3 is free. In other words,
any vector x in null(A4) looks like
2.’E3 2
x=|—-3x3| =x3 | -3
I3 1
So we have
null(A4) = Span{v}
where
2
v=|-3
1

O

Note 3.4.6 There is an important fact contained in this last example. When we
have a homogeneous system, we can always pay attention to just the coefficient
matrix instead of the augmented matrix. No elementary row operation can
produce a non-zero entry in a column of zeros.

The following theorem is one of the reasons that the kernel is so useful.

Theorem 3.4.7 Let T : V. — W be a linear transformation. Then T is
injective if and only if ker(T') = {0}.

Proof. We first suppose that T is injective. (We recall the definition of injec-
tivity from Definition 3.1.9.) Since T'(0y) = Oy, the injectivity of T implies
that v = 0y if T'(v) = Oy for any v € V. Therefore, ker(T') = {0}.

Next, we suppose that ker(7') = {0}. We want to prove that T is injective, so
we let vi,ve € V with T'(vy) = T(v2). We want to show that v = vo. By the
linearity of T" we have

T(Vl) — T(Vg) =0
T(Vl — V2) =0.

Since ker(T') = {0}, we must have v; — v = 0, meaning that v; = vo. This
proves that T is injective. |
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Example 3.4.8 Consider the linear transformation T : P, — R2 given by

To examine ker(7T'), we need to look at polynomials p € P; such that p(0) = 0
and p'(0) = 0. If p(t) = a + bt, then a = p(0) and b = p/(0), so if T'(p) = 0, we
must have a = 0 and b = 0. This means that the only polynomial in ker(7T) is
the zero polynomial. Therefore, T' is injective. O

We now present one final fact related to the kernel.

Corollary 3.4.9 Suppose that the linear system represented by the equation
Ax = b is consistent. Then this system has a unique solution if and only if

null(4) = {0}.

Proof. We first assume that the system has a unique solution. Since the
linear system is consistent, then there exists a vector v such that Av = b. If
w € null(A), then A(v+w) = Av+ Aw = b+ 0 = b, so v+ w is also a solution.
But since there is a unique solution, we must have v =v + w, so w = 0. This
shows that null(A4) = {0}.

We now assume that null(A) = {0}. From Theorem 3.4.7 we know that the
associated linear transformation is injective. Since the system is consistent,
there must be only one vector that the transformation sends to b so the system
has a unique solution. |

3.4.2 The Range as a Subspace

We have examined the kernel as a subspace of the domain of a linear transfor-
mation. We now turn our attention to a well-known subset of the codomain.
The reader will be familiar with the range (or image) of a linear transformation.
We can now prove that this is a subspace.

Theorem 3.4.10 Let T : V. — W be a linear transformation between vector
spaces over F. Then range(T) is a subspace of W.

Proof. Since we know that T'(0y) = Oy, it follows that Oy € range(T). We
now need to show the other properties demanded by Theorem 2.4.3.

If wi, wy € range(T), then there exist vectors vi,vy € V with T'(vy) = wy and
T(va) = wa. Then, using the linearity of T, we have

Wi + Wg = T(Vl) + T(Vg) = T(V1 + VQ).

This proves that w; + wy € range(T'), so range(T') is closed under addition.
Finally, we let k € F and w € range(T), so there exists a vector v € V such
that T'(v) = w. Then, using the fact that T is a linear transformation, we have

kw = kT (v) = T(kv),

which proves that kw € range(T"). Thus, range(T") is closed under scalar mul-
tiplication. We conclude that range(7") is a subspace of W. |

As usual, when our linear transformation is linked to a matrix, we have
more to say.

Definition 3.4.11 If A € M,, ,(F), then the column space of A, written
col(A), is the set of all linear combinations of the columns of A. If A =
[ai - - -ay], then

col(A) = Span{ay,...,a,}.
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O

When we introduced the matrix-vector product in Example 3.1.5, we noted

that Av is a linear combination of the columns of A with weights coming from

the entries in v. So, a vector in col(A) can be written as Ax for some x.
Therefore, another way to write the column space is

col(A) ={w e F™ | w = Ax for some x € F"}.

From this description, we can see that the column space of a matrix and the
range of a linear transformation are the same.

Fact 3.4.12 If T : F* — F™ is a linear transformation given by multiplication
by a matriz A, then
range(7T) = col(A).
We can also restate the consistency of linear systems using the language of
the column space.

Fact 3.4.13 If A € M,, ,(F), then the linear system Ax = b is consistent if
and only if b € col(A).

Since the column space of a matrix is a subspace of the codomain of the
associated linear transformation, there will be some occasions when that sub-
space is as large as it could be. The next theorem gives conditions for just that
situation.

Theorem 3.4.14 A set of vectors {vi,...,v,} spans F™ if and only if the
RREF of the matrix A = [vy---v,] has a pivot in every row.

Proof. The set of vectors {vy,...,v,} spans F™ if and only if b € col(A) for
every b € F™. This happens when the linear system with augmented matrix
[A | b] is consistent for each b.

We know from Theorem 2.2.2 that a linear system over F is consistent if and
only if there is no pivot in the final column of the augmented matrix. If the
RREF of A has a pivot in every row, then there cannot be a pivot in the final
column of the RREF of [A | b] since each row already contains one pivot.

We will prove the contrapositive of the other implication. Suppose that the
RREF of A does not have a pivot in every row. We will create a vector in F™
which is not in the span of this set of vectors. Since the RREF of A does not
have a pivot in every row, let the smallest row number with no pivot be k. Form
the augmented matrix with the RREF of A and the vector e;. Now reverse
the elementary row operations that were taken to reduce A to its RREF. The
result will be an augmented matrix [A | b] which is related to an inconsistent
system. (There will be a pivot in the final column of the RREF of this matrix.
We constructed it this way!) This proves that the set {vi,...,v,} does not
span F™. |

Example 3.4.15 Define the vectors u, v, w in IF% as

0
v= |4
4

) 7

3 0
3 3
How large is Span{u, v, w}?

We form the matrix [u v w] and find the RREF:

R
3 00 1 00
2 4 4] ~10 1 0
3 4 3 0 01

Since there is a pivot in each row, the set {u,v,w} spans F3. O
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Example 3.4.16 Consider the following vectors in R3:

-2 1 =5 1 0 4
3 -2 6|~|0 1 3
-1 2 2 0 0 O

Since there is not a pivot in every row, the set {u,v,w} does not span R®. [

3.4.3 Reading Questions

1. Let A be the following matrix:

2 2
A=13 -2
3 -5

Let T : R?2 — R3 be the linear transformation which is multiplication by
A.

(a) Calculate null(A).

(b) Is T injective? Explain.

2. Consider the following three vectors in F3:
|2 10 10
u= 11 v=, w= [,
Does the set {u,v,w} span F5? Explain.

3.4.4 Exercises

1. Consider the following matrix A in Ms 4(F7):

6 3 3 6
A=10 3 0 2
3 5 2 2
For each of the following vectors x € F%, determine whether or not x €
null(A).
0
() x= |,
_2_
7
() x= |7
_2_
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2. For each of the following matrices A over R, find null(4) by producing a
set of vectors that spans null(A).

2 3 4 2

() A= "5 4 5 _3

2 -4 -5 -3 1
(b)) A=|1 4 —5 4 5
0 -2 5 0 5

3. Find a matrix A so that the following set is col(A):
2r 4 4s

3s— Tt | s,t€R
—r—s5+5t

4. Let A and x be the following, with entries from R:

3 -1 2
=155 ==l
(a) Show that x € null(A) and x & col(A).

(b) Explain why it is not possible, for this particular matrix A, to find
a non-zero vector in null(4) N col(A).

(c) Is it possible to find a matrix A € M3(R) such that there exists a
non-zero vector in null(A) Ncol(A)? Justify your answer thoroughly.

5. Consider the following linear transformation 7 : F2 — F3:

T1 21‘1 —|— 4172 + 6133 —|— Tq

T 52 = 4.(81 + 61‘2 + 5333
(,CB 4.’E1 + 2£C2 + 3£E3
4

This T is not injective. Find distinct vectors x; and x5 in ]F‘71 such that
T(Xl) = T(Xz).

6. Consider the following linear transformation T : F3 — F:

1 + 3x2 + 323

T il 2581 + 6:62 + 31’3
2 T2 + 33
€3

3x1 + dx9 + 623

This T is not surjective. Find a vector y € F# such that y is not in the
image of T.

7. Consider the following linear transformation 7" : R? — Py:

a
T [b] ] =(a+b)+ (b+c)t+ (a+b+c)t
C

(a) Either prove or disprove that T is injective.

(b) Either prove or disprove that T is surjective.
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8.

10.

Consider the following linear transformation T : R? — Py:

() e

(a) Either prove or disprove that T is injective.

(b) Either prove or disprove that T is surjective.

Consider the following linear transformation 7" : P, — R?:

T(a+ bt + ct?) = [aQb}

3b+c|”
(a) Either prove or disprove that T is injective.

(b) Either prove or disprove that T is surjective.

For each of the following, consider a linear transformation 7" : R" —
R™ which is multiplication by the given m X n matrix A. In each case,
determine whether or not 7' is injective and whether or not T is surjective.
Explain your answers.

(2 —4 —14
(a) A= |—4 —1 10
-2 2 10

-3 -5 -2 3
b A=|1 1 -5 -5

2 —2 2
4 -1 7
©A=|_3 1 _4
0 5 5]
[—2 -3 —1]
d) A=|5 -5 -2
0 4 —4]

Writing Exercises

11.

12.

13.
14.

Suppose that T': U — V is a linear transformation between vector spaces
over F. If U’ is a subspace of U, prove that T(U’) is a subspace of V,
where

TU)={T(weV|uelU}.
Suppose that T : U — V is a linear transformation between vector spaces
over F. If V' is a subspace of V, define the set Uy by

Uy={ueU|T() eV

Prove that U is a subspace of U.
Let A € M, »(F) and let B € M,, ,(F). Prove that col(AB) C col(A).

Prove that if n < m, then no set of n vectors can span F™.
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Determinants

4.1 Defining the Determinant

In the previous chapter, we learned an algorithm for finding the inverse of an
invertible n x n matrix A. This algorithm also told us when a matrix is not
invertible—that is, when it is singular. The centerpiece of the algorithm was
the row reduction of an n x 2n matrix.

In this section, we will learn about the useful and powerful function called
the determinant. The determinant by itself will not give us the inverse of a
matrix, but it will reveal whether or not a matrix is invertible.

4.1.1 The Definition of the Determinant

Z} has the property

that ad — be # 0, A is row equivalent to Io. (In that context we were working
over R, but this is true over any field.) The converse is also true, though we
haven’t yet established it.

If we connect this fact with Theorem 3.3.8, we see that when ad — be # 0,
the 2 x 2 matrix A is invertible. (We will see that the converse of this statement
is also true.)

This quantity ad — bc for A is special—it is called the determinant of A,
and this relationship between the determinant and invertibility also holds for
larger matrices. The goal of this section is to define a number for any n x n
matrix which functions the same way that ad — bc does for a 2 x 2 matrix.

In Exercise 1.3.12, we saw that when a matrix A = [i

Definition 4.1.1 For an m x n matrix A, we define A;; to be the submatrix
of A that results from deleting row ¢ and column j from A. O

Example 4.1.2 If A is the following matrix,

3 -7 -4 -7
A=12 0 -8 -2f,
8 6 2 2

then the submatrices A;3 and Agq are

2 0 -2 3 —4 -7
Al?’:[s 6 2}’1422:[8 2 2]'

88
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Perhaps surprisingly, this bit of notation is all we need to define the de-
terminant. We note that this is a recursive definition, which means that the
calculation happens in stages by reducing the size of the matrix.

Definition 4.1.3 Suppose that A € M, (F) with n > 1, and let the entries
of A be denoted a;;. Then the determinant of A, denoted det(A) or |4], is
defined as follows. If n = 1, then det(A4) = ay;. If n > 2, then

det(A) =ai1 det(All) — a12 det(Alg) —+ -+ (—1)1+"a1n det(Aln)

= Z(_1)1+ja1j det(A1j>.
j=1

O

To calculate the determinant of an n X m matrix, we need to know the
determinant of a lot of (n —1) X (n — 1) submatrices—in fact, we need to know
the determinant of n submatrices. The reader will appreciate that when we
begin with a small matrix, this is a manageable calculation; when the matrix is
larger, carrying out this calculation by hand would be a decidedly less pleasant
task.

Note 4.1.4 When n = 2, the formula for the determinant of A reduces to the
familiar expression with which we opened this section. Note that, in this case,
A11 = [ag2] and A1y = [ag1] are both 1 x 1 matrices. We have

det(A) = a1 det(AH) — a2 det(A12)
= a11G22 — (12021

This last expression is precisely ad — bc with different symbols.
We will put our new definition to use in the following example.

Example 4.1.5 Let A be the following matrix over R:

2 -4 -1
A=|6 -6 0
-5 -3 -5

We will find det(A) using the formula:

-6 0 6 0 6 —6
det(A) _2‘_3 _5' —(—4) ‘_5 _5‘ +(=1) ‘_5 _3‘
= 2(30 — 0) + 4(—30 — 0) — (—18 — 30)
=60 — 120 448 = —12.
We see that det(A) = —12. O

Note 4.1.6 For the purposes of what follows, we will introduce another bit of
notation. If A = [a,;], then the (i, j)-cofactor of A, by C;;, is

Cij = (—1)i+j det(Aij).

Our first determinant formula could then be written

det(A) = Z aleU.
Jj=1
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4.1.2 Additional Ways to Calculate the Determinant

The definition of the determinant uses the first row of the matrix as its “home
base” for calculations. For this reason, the original formula is sometimes re-
ferred to as cofactor expansion along the first row of A. A perhaps surprising
result, and one we will not prove here because of its complicated nature, as-
serts that the determinant can be calculated using expansion along any row,
not just the first.

Theorem 4.1.7 Suppose that A = [a;;] and that A € M, (F) withn > 2. Then
det(A) can be calculated using cofactor expansion across any row of A. In
other words, for any 1 < i <n, we have

det(A) = Z aijCl-j.
j=1

Because we can target any row of a matrix in our calculation of the deter-
minant, rows which contain several zero entries are particularly attractive.

Example 4.1.8 We consider the following matrix A:

2 1 -3
A=10 4 0
-1 -5 -2

Since we can expand along any row to calculate the determinant, and since
the second row contains two zeros, we will expand along the second row. The
zeros make it unnecessary to calculate the cofactors Cy; and Cos:

det(A):O~C’21+4-C22+O~C23

2 -3
-1 -2

=4(—4-3) =28

— (1P|

|

In addition to expanding along any row of a matrix to calculate the deter-

minant, we can also use any column. Instead of proving this directly using the

definition of the determinant, we will follow Beezer® and prove that a matrix

and its transpose have the same determinant. The result about using columns
to calculate the determinant will follow.

Theorem 4.1.9 Let A € M,(F). Then det(A) = det(AT).

Proof. We will proceed using induction on the size of the matrix. Whenn =1,
a matrix A and its transpose are identical, so det(A4) = det(AT) trivially.

We now suppose that for any square matrix of size n— 1, the determinant of the
matrix and its transpose are equal. In the calculation below, we will employ a
trick at the beginning in order to have a second summation sign later on. The
first equation here is true because taking the average of one number n times
will give the same quantity again. We will use the notation [A”];; to indicate
the (i, j)-entry of A”. We have

det(AT) = ! idet(AT)

n-

5linear.ups.edu
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1 n n

= DD (1)HI[AT];; det(A).
i=1 j=1
By the definition of the transpose, we have [A];; = aj; and AT = (4;:)". So

n n

det(AT) = = 37 3 (=1)" i det((4;0)7).

We now invoke the induction hypothesis. Since A;; is a square matrix of size
n—1, we have det((A;;)T) = det(A;;). This, along with Theorem 4.1.7, allows
us to finish the argument:

det(AT) = % i i(—l)ﬂ_jaji det(Aji)

i=1j=1

i=1 j=1

B % DD (1) g det(4;:)

j=1i=1

= % idet(A) = det(A).

As a final note, we were able to switch the summation signs toward the end of
this calculation due to the fact that addition is commutative in any field F. W

Corollary 4.1.10 Suppose that A = [a;;] and that A € M, (F) with n > 2.
Then det(A) can be calculated using cofactor expansion along any column of A.
In other words, for any 1 < i < n, we have

det(A) = Z ajiCji.
j=1

Proof. We note that column i of A is the same as row i of A”. So, calculating
det(A) using expansion along column i is the same as calculating det(AT) using
expansion along row 4. But since det(A”) = det(A), this calculation will result
in det(A). [ |

The following example shows how we can use this flexibility in calculating
the determinant.

Example 4.1.11 We will calculate the determinant of the following matrix:

3 1 0 -1
-2 -1 2 4
A= 1 3 0 -3
2 -2 0 O

Since the third column of A has three zeros, we will expand along that column:

4
det(A) = Z aigcig =2- 023.

i=1

Just for this example, we will rename A3 = B, so det(A) = —2det(B). Here
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is B:

3 1 -1

B={1 3 -3

2 -2 0

We will take advantage of the zero in the (3, 3)-entry of B by expanding along
the third row to calculate det(B):

3 3|+ 0]

= 2(0) + 2(—8) = —16.

det(B) = (~1)*(2) ’ ? _:13’

Since we determined that det(A) = —2det(B), this means that det(A) = 32.

|

We will close this section with one final result, the proof of which will be

Exercise 4.1.4.10. The truth of this proposition also relies on rows/columns

with many zeros. By a “triangular” matrix we mean either an upper triangular
or a lower triangular matrix.

Proposition 4.1.12 Let A € M, (F) be a triangular matriz. Then det(A) is
the product of the entries along the main diagonal of A.

4.1.3 Reading Questions

1. Compute the determinant of the matrix A by cofactor expansion across
the first row. Write out all of your calculations.

2 1 -1
A=|0 3 4
1 -1 5

2.  Consider the following matrix B:

2 3 1
B=1]6 -2 -1
0 O 4

(a) Compute the determinant of B by cofactor expansion down the third
column. Write out all of your calculations.

(b) There is a better row or column to use for this calculation. Which
one is it? Choose that row or column and compute the determinant
of B by cofactor expansion along that row or column. Write out all
of your calculations. Why is this easier?

4.1.4 Exercises
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1. For each of the following matrices over R, find the determinant by hand
using cofactor expansion along a row or column of your choice.

(3 3 —05
) A=|2 -3 0
-1 2 2

2 -4 4 -1
-1 0 -4 3
2 2 -4 0
4 0 -2 1

2. For each of the following matrices over R, find the determinant by hand
using cofactor expansion along a row or column of your choice.

-3 3 0
(a) A=|0 4 =2
-1 -4 2

[—2 4 0 0
05 -35 -2 -4
0.5 0 0 -2

1 -2 3 -3

3.  Consider the following matrix A with entries in Fs:

3
A=10
4

N = =

4
1
4

Find det(A) by hand using cofactor expansion along a row or column of
your choice. (The answer should be a number in Fs.)

4. For each of the following, write down the elementary matrix that performs
the given elementary row operation on a 3 x 3 matrix. Then, calculate
the determinant of that elementary matrix.

(a) Multiply row 2 by —3
(b) Switch rows 2 and 3

(¢) Replace the third row with the sum of the third row and seven times
the first row

5. Let A = B _12} Write down the matrix 54. How are det(A) and

det(5A) related?

6. Let A= [z Z} be a matrix over R and let k¥ € R. Find a formula that

relates det(kA) to k and det(A).

7. Let A= 215 ;2 be a matrix over R. Find a value of ¢ so that det(A) =

0 or explain why this is not possible.

8. Let A be the following matrix over R:

2 -2 1
A=13 -2 0
2 3

Find a value of ¢ so that det(A) = 0 or explain why this is not possible.
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9. Let A be the following matrix over R:

r—95 1
A_[ 4 zZ]

Find all values of = such that det(A) = 0.
Writing Exercises

10. Prove that the determinant of a triangular matrix is the product of the
entries along the main diagonal.

11. Prove that if A is a 2 x 2 matrix and if B is the result of switching the
rows in A, then det(B) = — det(A).

12. Suppose that A is a 2 x 2 matrix and that B is the result of applying the
replace row operation to A. Prove that det(B) = det(A).

4.2 Properties of the Determinant

We have introduced the determinant, but we have not yet backed up our asser-
tion that the determinant is useful or powerful. Our goal in this section is to
establish just that. In particular, by the end of this section we will be able to
conclude that the determinant gives a characterization of the invertibility of a
square matrix.

4.2.1 The Determinant and Elementary Row Operations

In this subsection we will discover how elementary row operations affect the
determinant of a matrix. These will be essential facts for proving the big
theorems of this chapter. We begin with a result that is obvious in light of
Theorem 4.1.7.

Proposition 4.2.1 Let A € M, (F). If A has a row of zeros, then det(A) = 0.

Proof. To calculate det(A), we use cofactor expansion along the row of zeros.
This immediately shows that det(A) = 0. ]

Note 4.2.2 We observe that Proposition 4.2.1 is also true if the word “row” is
replaced by “column” since a matrix and its transpose have equal determinants.
The reader should consider each result in this section and reflect on whether
the statement would still hold after making the same word exchange.

Now, we examine the effect of the switch elementary row operation.

Theorem 4.2.3 Let A € M, (F) and let B be the result of switching two rows
in A. Then det(B) = —det(A).

Proof. We will proceed by induction on n. This result only makes sense for
n > 2, and the base case of n = 2 was covered in Exercise 4.1.4.11.

We let k be an integer such that k£ > 2 and we assume the result is true for all
k x k matrices. Let A be a (k+ 1) x (k4 1) matrix and let B be the result of
switching two rows in A. We want to show that det(B) = — det(A).

Since k > 2, we have k + 1 > 3, which means that we can calculate det(B)
by expansion along a row that is not involved in the row exchange. Suppose
that B was produced by switching rows p and q. We will calculate det(B) by
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expanding along row 4, where 7 is distinct from both p and q. We have

k+1
det(B) = i(—l)”j [B];; det(B;;).

=1

We note that since ¢ will never be p or ¢, [B];; = [A];; for all j. Additionally,
for all j, B;; can be obtained by performing a switch row operation on A;;.
This means that, by the inductive hypothesis, we have det(B;;) = — det(4;;)
for all 7 since these matrices are k x k. So, we have

k+1 o
det(B) = Z(—l)’ﬂ [A]ij(—1) det(A;5)
]7k+1
== (=1)"V[A];; det(Aj)

= —det(A).

This completes the inductive step.

We have shown that the result holds for all n > 2 by the Principle of Mathe-

matical Induction. [ ]
The second elementary row operation we will consider is the scale operation.

How is the determinant of a matrix affected if one row is multiplied by a non-

zero element of the field?

Theorem 4.2.4 Let A € M, (F) and let B be the result of multiplying a row
in A by a non-zero ¢ € F. Then det(B) = cdet(A).

Proof. We will not need induction for this argument. Suppose that B is formed
by multiplying row i in A by ¢ € F where ¢ # 0. We will calculate det(B) by
expanding along row 4. Note that since row 4 is the only row affected by this
operation, B;; = A;; forall 1 < j < n. Additionally, we note that [B];; = c[A];;
for all 1 < j < n. Now we have

det(B) = zn:(—l)”j [Blij det(Bi;)
- Z(—l)”jC[A]ij det(Aq;)

C Z(—l)i_‘—j [A]lj det(Aij)

= cdet(A).

|
We now present the result related to the remaining elementary row opera-
tion, the replace operation.

Theorem 4.2.5 Let A € M, (F) and let B be the result of replacing a row in A
with the sum of that row and ¢ times another row in A. Then det(B) = det(A).

Proof. We proceed by induction on n. This result only makes sense when
n > 2, and the base case of n = 2 is covered in Exercise 4.1.4.12.

We let k be an integer such that £ > 2 and we assume the result is true for all
k x k matrices. Let A be a (k+ 1) x (k+ 1) matrix and let B be the result of
replacing row ¢ in A with the sum of row ¢ and ¢ times row p in A. We want
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to show that det(B) = det(A).

We observe that k is large enough that we can calculate det(B) by expanding
along a row which is not row ¢; we will call that row 7. Since i # ¢, we have
[Blij = [A];j for all 1 < j < n. Additionally, for each j, B;; is a k x k matrix
which has been obtained from A;; by a replace row operation. The inductive
hypothesis means that det(B;;) = det(A4;;) for all 1 < j < n. Therefore, we
have the following;:

det(B) =

This completes the inductive step.

We have shown that the result holds for all n > 2 by the Principle of Mathe-

matical Induction. ]
The following example shows how these three theorems can be used to

calculate the determinant of a matrix using row reduction.

Example 4.2.6 Let A be the following matrix:

2 0 -3
A=|1 -1 2
-2 3 0

We will find det(A) using row reduction. We first switch rows 1 and 2, which
introduces a negative sign:

det(A)=—|2 0 -3
-2 3 0

Once we reduce the matrix to a triangular form, we can use Proposition 4.1.12,
so we do not need to reduce the matrix to RREF, only to REF. This means
that the rest of the row reduction can be performed using only the replace
operation, which does not change the determinant:

1 -1 2 1 -1 2 1 -1 2
det(A)=—12 0 =3[=-0 2 -7l=-|0 2 -T7|.
0 3 -3 0 3 -3 0 0

We have reduced the matrix far enough so that we can calculate its determinant
using the product of the entries along the main diagonal:

det(4) = (=1)(1)(2)(3) = —15.

M‘;

4.2.2 Invertibility and the Determinant

We will use the results that have accumulated thus far in this section to prove
two major results. First, we need to record an easy fact.

Lemma 4.2.7 For any n > 1, we have det(I,,) = 1.
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Proof. Since the identity matrix is, among other things, a triangular matrix,
Proposition 4.1.12 applies. The entries along the main diagonal are all 1, so
det(l,) = 1. ]

We will now apply this lemma to record the determinant of any elementary
matrix.

Proposition 4.2.8 Let E € M, (F) be an elementary matriz.
1. If E performs the switch elementary row operation, then det(E) = —1.

2. If E performs the scale elementary row operation, and if the scaling is by
c €F, then det(E) = c.

3. If E performs the replace elementary row operation, then det(E) = 1.

Proof. Every elementary matrix in M, (F) is the result of performing a single
elementary row operation on I,,. We have theorems in this section which tell us
how these elementary row operations affect the determinant of a matrix, and
since from Lemma 4.2.7 we know that det(I,,) = 1, we will be able to arrive at
our result.

If FE performs a switch row operation, then by Theorem 4.2.3 we have det(F) =
det(EI,) = —det(I,) = —1.

If E scales one row of a matrix by a non-zero ¢ € F, then by Theorem 4.2.4 we
have det(F) = det(E1,) = cdet(I,) = c.

Finally, if E performs a replace row operation, then by Theorem 4.2.5 we have
det(E) = det(E1,) = det(I,,) = 1, which completes the proof. |

Example 4.2.9 Sometimes, the easiest way to find a determinant by hand is
to use a combination of cofactor expansion and row reduction techniques. Let
A € M4(R) be the following matrix:

0 1 -1 2
1 3 0 =2
A= 2 4 1 -1
-2 0 -1 -3

To find det(A), we first use the replace row operation, using the 1 in the (2,1)
position to put zeros in the column below it:

01 -1 2
1 3 0 -2
A~lg 2 1 3|78

0o 6 -1 =7

Since the replace row operation doesn’t change the determinant, we have
det(A) = det(B). We now use cofactor expansion along the first column to
calculate det(B). Since there is only one non-zero entry in that column, we
have

1 -1 2
det(B)=—|-2 1 3].
6 -1 -7

We can now use the replace row operation three more times, to produce zeros
in the (2,1), (3,1), and (3,2) positions of this 3 x 3 matrix:

1 -1 2 1 -1 2
det(B)=—[0 -1 7 |=-]0 -1 7
0 5 -—19 0 0 16

We now invoke Proposition 4.1.12 to see that det(B) = —(—1)(16) = 16. Since
det(B) = det(A), we have det(A) = 16. O
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In this next result, we use Proposition 4.2.8 to show that the determinant
respects matrix multiplication, at least when one of the factors is an elementary
matrix.

Theorem 4.2.10 Let A, E € M,,(F), and let E be an elementary matriz. Then

det(EA) = det(E) det(A).

Proof. This argument uses Proposition 4.2.8 and requires three cases. If
E performs a switch row operation, then we know from Theorem 4.2.3 that
det(EA) = — det(A). Since we now know that det(E) = —1, we have

det(EA) = —det(A) = det(E) det(A).

If F performs a scale row operation, and if the scaling is by a non-zero ¢ € F,
then we know from Theorem 4.2.4 that det(EA) = cdet(A). Since det(E) = ¢,
we have

det(FA) = cdet(A) = det(F) det(A).

Finally, if E performs a replace row operation, then we know from Theo-
rem 4.2.5 that det(EA) = det(A). We know that det(E) = 1, so

det(EA) = det(A) = 1-det(A) = det(E) det(A).

]
Armed with this result, we can now prove one of the most useful facts about
determinants.

Theorem 4.2.11 For any n X n matriz A over F, A is invertible if and only

if det(A) # 0.

Proof. For A € M,(F), let B € M,(F) be the unique RREF of A. From
Proposition 3.3.6, we know there exist elementary matrices Fy,..., Ey such
that

A=F,---E;B.

We can apply Theorem 4.2.10 repeatedly to see that
det(A) = det(E; - -- Ex,B) = det(Ey) - - - det(Ey) det(B).

Since det(E;) # 0 for each ¢ by Proposition 4.2.8, we conclude that det(A) # 0
if and only if det(B) # 0.

We now assume that A is invertible. Theorem 3.3.8 tells us that B = I,,, so
det(B) # 0. This proves one direction of the theorem.

We will prove the contrapositive of the other direction of the theorem. We now
assume that A is not invertible, which (again by Theorem 3.3.8) means that
B =# I,,. Specifically, B must have fewer than n pivots, which means that B
must have at least one row of zeros. By Proposition 4.2.1 we have det(B) = 0.
Therefore, we must also have det(A) = 0. [ |

If a casual math student spends some time away from linear algebra, this
previous theorem might be the one and only fact they remember about the
determinant. It is powerful and used frequently.

Example 4.2.12 Using this theorem, if A € M3(R) is

2 4 2
A=|1 0o 3|,
35 2 125

then we can say that A is not invertible since det(A) = 0.
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We can also analyze the invertibility of matrices over other fields. Consider
the matrix B € M3(F5) given by

B =

— =W

4 1
4 0
2 4

We find that det(B) = 0, so B is not invertible. (If B were a matrix over R,
we would have det(B) = 30. But this means that, in Fs, det(B) = 0.)
Finally, we consider another matrix C' € M3(Fs):

0 2 3
c=11 2 1
2 21

Since det(C) =1 in F5, C is invertible. O

We present one final, important result about determinants in the last the-
orem of this chapter.

Theorem 4.2.13 Let A, B € M, (F). Then det(AB) = det(A) det(B).

Proof. We will prove this in two cases. First, if A is not invertible, then neither
is AB, by Exercise 3.3.4.10. This means that det(AB) = det(A) det(B) since,
by Theorem 4.2.11, both sides of the equation are zero.

If A is invertible, then A is row equivalent to I,, and there exist elementary
matrices E1, ..., F such that

A=F, - Eyl, = Ey - Ej.

In the calculation that follows, we use this factorization as well as repeated
application of Theorem 4.2.10. We first use Theorem 4.2.10 to peel the deter-
minant of elementary matrices away from det(B); we then use the same result
to put those determinants back together to form det(A). Here is the argument:

= det(B)) det(Es) det(Es - - EB) = - - -
)---det(Ey) det(B)

= det(E1Es) - - - det(Ey)det(B) = - -

E; - Ey)det(B) = det(A) det(B).

This completes the proof. ]

We take a step back for a moment to marvel at this theorem. We defined ma-
trix multiplication in the context of the composition of linear transformations
(see Subsection 3.2.2), and the calculations were quite involved. The definition
of the determinant was also complicated, but in a different way, so the fact
that these two notions fit together so nicely is worthy of our admiration.

Example 4.2.14 In this example, we will verify Theorem 4.2.13 for a specific
example. Let A and B be the following matrices:

-1 =2 -2 4
[ a2 ]

We calculate AB as

-6 -8
AB = {—10 —20] '
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We see that det(A) = —2, det(B) = —20, and det(AB) = 40, so the relationship
det(AB) = det(A) det(B) holds. O

4.2.3 Reading Questions

1. Consider the following three matrices:

3 -1 -2 1 1 2 3 -1 -2
A=11 2 0|, Ai=1|1 2 0], A=11 2 0
1 1 2 3 -1 -2 0 -1 2

(a) Calculate det(A) using cofactor expansion along some row or column.
Show your work.

(b) The matrix A; was obtained from A by a single elementary row
operation. Which one?

(¢) Knowing det(A) and given your answer to (b), what do you predict
det(A;) to be? (Consult Theorem 4.2.3.)

(d) Calculate det(A;) using cofactor expansion along some row or col-
umn. Show your work.

(e) The matrix As was obtained from A by a single elementary row
operation. Which one?

(f) Knowing det(A) and given your answer to (e), what do you predict
det(As2) to be? (Consult Theorem 4.2.5.)

(g) Calculate det(As) using cofactor expansion along some row or col-
umn. Show your work.

2. Verify Theorem 4.2.13 for the following two matrices A and B:

4 1 -1 2
A:{5 2] and B:{l 3]

(You should follow Example 4.2.14)

4.2.4 Exercises

1. Find the determinant of the matrix using row reduction.

1 2 -1
(a) A=]2 —4 -2
-4 -3 2
[-1 -2 0 3
-2 -2 0 -2
(b) A= 0 2 1 0
| 3 8§ 3 7
2. Find the determinant of the matrix using row reduction.
[—2 -1 2
(a) A=|-1 0 2

3 -3 0
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ByA=13 1 1
-1 -2 -1 3
3. Find the determinant using a combination of row reduction and cofactor
expansion:
2 1 -3 1
4 3 -1 0
A= 0o -1 3 -1
-2 1 2 1

4. Find the determinant using a combination of row reduction and cofactor
expansion:
-1 2 1 4
3 -4 1 =3
4 —-10 -1 O
-1 4 2 3

5. Use the determinant to determine whether or not the matrix is invertible.
(Note that not all fields are R!)

2 01
(a) Ae .2\43(15‘3)7 A=1(0 0 2
2 20
-3 -1 -1
(b) A€ My(R), A= | 0 -3 -3
2 -3 3
3 1 0
(C) Ae M3(IF5), A=10 3 1
4 1 3
C[2+i 2-3i
(d) A €M(C), A= [4—1’ —2+4¢]

0 3—2t —2—4
() Ac Ms(C), A= | -2 2+4i 0
3+t —1+41 0

6. Calculate det(A43) if
210
A=10 1 1
11 2

7. Construct an invertible matrix A € M3(R). For each entry of A, compute
the corresponding cofactor. Create a new 3 x 3 matrix with these cofactors
in the same position as the entry of A on which they were based; call this
matrix C. Calculate ACT. What do you observe?

Writing Exercises

8. Suppose that A is a square matrix with two identical columns. Prove that
det(A) = 0.
1
det(A4)’

9. Suppose that A € M, (F) is invertible. Prove that det(A™!) =
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10.

11.

12.

13.

(a) Suppose that A € M,(R) and that det(A4*) = 0. Prove that A is
not invertible.

(b) Does the result or your argument in part (a) change if R is replaced
with F7? Explain.

Suppose that A, B € M, (F). Show that det(AB) = det(BA) regardless
of whether or not AB = BA.

Let A € M, (F) and let k € F. Find a formula for det(kA) and prove that
your formula is correct.

(a) Verify that det(A) = det(B) + det(C) where A, B, and C' are

_la+e b+ f _la b e f
A B v R

(b) Let A and B be

<y ol

Show that det(A + B) = det(A) + det(B) if and only if a + d = 0.

(c) Provide an example where A, B € M3(R) to prove that det(A+B) =
det(A) + det(B) is not always true.

14. Consider the following matrix (called a Vandermond matrix):

V =

_ =

o o
(=l
[\v]

(a) Use row operations to explain why det(V) = (b — a)(c — a)(c — b).

(b) Explain why V is invertible if and only if a, b, and ¢ are all distinct
real numbers.



Chapter 5

The Dimension of a Vector
Space

Thus far in this text, the only way we have related vector spaces to each other
is through linear transformations between those spaces. But we have not had
any ntrinsic quality of a vector space that enables comparison between spaces.

The notion of the dimension of a vector space allows just such a comparison.
In this chapter we will develop the necessary machinery for defining dimension,
and we will relate this concept to matrices, linear transformations, and more.

5.1 Linear Independence

Linear independence—or, rather, its opposite—is related to the idea of redun-
dancy. If there is a linear dependence among a set of vectors, then we don’t
need all of those vectors to produce the same span.

Definition 5.1.1 Consider a set of vectors V' = {vy,...,v,} in a vector space
V. When n > 2, we say that V' is linearly dependent if, for some i, 1 < i < n,
v; is a linear combination of the other vectors in the set. When n = 1, the set
V' is linearly dependent if and only if v; = 0. %

Example 5.1.2 Consider the following three vectors in F3:

0 1 1
u= (2|, v= |1, w= |0
1 1 2
The set {u,v,w} is linearly dependent since v =2u+ w. O

The definition of linear dependence we have given is the intuitive one, but
it is not the one most widely used. The following result provides an equivalent
definition of linear dependence which is much easier to deploy.

Proposition 5.1.3 A set of vectors V' = {vy,...,v,} in a vector space V is
linearly dependent if and only if there exist c1,...,c, € F, not all of which are
0, such that

0=civi+---+c,vp.

Proof. We will first dispatch with the case where n = 1. If n = 1 and V'
is linearly dependent, then vi = 0. Then the equation 1v; = 0 is satisfied.
Conversely, if ¢;vy = 0 for some ¢; # 0, then by Theorem 2.3.12, Item 7, we

103
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must have v; = 0, meaning V"’ is linearly dependent.

We now consider the case where n > 2. If V' is linearly dependent, then some
vector in V’, call it v}, is a linear combination of the other vectors in V’. This
means we have

Vj = C1V1 + -4 Cj,1Vj,1 —+ Cj+1Vj+1 + -4 CnVp.
If we subtract v; from both sides, we have
0=civi+---+ Cj—1Vj—1 —Vj + Cjt1Vjt1 + -+ + CrVp.

Since we now have written 0 as a non-trivial linear combination of the vectors
in V'—that is, the coefficients in the linear combination are not all zero—we
have completed half of the proof.

We now suppose that there is a linear combination of the vectors in V’,

0=c1vi+ -+ cpvp,
where not all of the coefficients are zero. If ¢; # 0, then we can write

—CjVj =C1V1+ -+ Cj—1Vj—1 + Cjr1Vjr1 + -+ CaVp

C Ci_
V= <1) vi4 -+ (31) Vi1
Cj Cj
Ci c
(22 ) bt (-2
Cj Cj

Thus we have written v; as a linear combination of the other vectors in V’, so
V' is linearly dependent. |

We will often use this statement in Proposition 5.1.3 as our definition of
linear dependence.

Definition 5.1.4 A set of vectors V' = {vy,...,v,} in a vector space V is
linearly independent if it is not linearly dependent. %

Note 5.1.5 In practice, we will think about linear independence in the follow-
ing way. A set V' = {vy,...,v,} is linearly independent if the vector equation

T1vi+-- v, =0

has only the trivial solution.
Further, when a set V' is linearly dependent, then we will call a non-trivial
linear combination
cvi+ -+, vy, =0

a linear dependence relation for the vectors in V',
We will try to make the notions of linear dependence and linear indepen-
dence more concrete with some examples.

Example 5.1.6 Consider the set V' = {p1,p2} in P, where
pr =1+t and py = 3t%

We can see that the set V' is linearly independent, because the only way to
produce the zero polynomial from the combination c¢ip; + cops is if ¢; = co = 0.
This is relatively easy to see in this example, since the degrees of ¢ are not at
all shared between p; and py. If the coefficient of t? must be zero in the sum
c1p1 + capo, then we must have co = 0. And if the coefficient of ¢ must be zero
in the sum cip; + cops, then we must have ¢; = 0. O
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Example 5.1.7 Consider the following vectors in R2:

=R

We can show that vz € Span{vy, va} by a familiar matrix reduction:
2 —4 5 1 0 =25
4 -2 -5 0 1 —-25|"°
This shows us that v = —2.5v; — 2.5v,, which proves that the set {vy, vy, vs}

is linearly dependent. Further, we can conclude that the following is a linear
dependence relation for the vectors in the set {vy,va,vs}:

0 =2.5v] + 2.5vy + v3.

|

We will see now that sets of two vectors are particularly nice when it comes
to determining linear independence. (This means that there was an easier way
to complete Example 5.1.6.)

Consider a set V! = {v,w} in a vector space V. If V' is linearly dependent,
then we can write v = c¢w or w = dv for some ¢,d € F. Conversely, if V' is
linearly independent, then we cannot have either v = ¢w or w = dv. This
means that we have a handy characterization of linear dependence for sets of
two vectors.

Fact 5.1.8 A set of two vectors {v,w} is linearly dependent if and only if at
least one of the vectors is a multiple of the other. The set is linearly independent
if and only if neither vector is a multiple of the other.

Example 5.1.9 If v and w are the following vectors in R3,

4 2
v=|3 and w= | 3 |,
-3 -1

then the set {v,w} is linearly independent since neither v nor w is a multiple
of the other. O

There is one other notable fact that will allow us to determine whether
particular sets of vectors are linearly dependent.

Fact 5.1.10 Any set of vectors that contains the zero vector is linearly depen-
dent. This is true because a linear dependence relation is easy to construct. If
{vi,...,Vn} is a set of vectors in a vector space V, and if v; = 0, then

0=0vi+---4+0v,_1 +1v; +0vjy1 +--- +0v,

s a non-trivial linear combination of the vectors in the set which produces the
zero vector.

A reader may guess that we will occasionally need to figure out whether
or not a given set of vectors is linearly independent. As with questions about
span, this turns out to be easier when the vector space is F™ for some field F.
For other sorts of vector spaces, we will need different methods.

Proposition 5.1.11 Let A € M, ,(F). The columns of A are linearly inde-
pendent if and only if x = 0 is the only solution to the linear system represented

by the equation Ax = 0. That is, the columns of A are linearly independent if
and only if null(A) = {0}.
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Proof. Let vy,...,v, € F™ be the columns of A. Then the vector form of the
equation Ax = 0 is
vy + -+ v, =0.

If the columns of A are linearly independent, then the only solution to this
equation is x = 0, which means that null(A) = {0}. Alternatively, if the
columns of A are linearly dependent, then null(A) contains a non-zero vector—
namely, the vector of scalars which provides a linear dependence relation for
these vectors. ]

Note 5.1.12 The reader may note the slight abuse of terminology in the
previous proof. We referred to the columns of a matrix being linearly dependent
or independent instead of the set containing the columns of the matrix. We
trust that the reader will forgive and overlook this misstep since the meaning
is clear and the verbal gymnastics needed to be precise at all times can prove
tiresome.

The following proposition provides another test of the linear dependence of
a set of vectors.

Corollary 5.1.13 If n > m, then every set of n wvectors in F™ is linearly
dependent.

Proof. Let V! = {vq,...,v,} be a set of vectors in F” and let A be the matrix
with the elements of V' as its columns. By Corollary 1.3.7 (or, technically, by
the version of this result generalized to any field F), we know that the m x n
linear system represented by Ax = 0 cannot have a unique solution. Since
x = 0 is a known solution, the presence of another solution means that the
columns of A must be linearly dependent by Proposition 5.1.11. |

Proposition 5.1.11 provides us with a convenient algorithm to determine
whether or not a set of vectors in F™ is linearly independent.

Algorithm 5.1.14 Suppose V' = {v1,...,v,} is a set of vectors in a vector
space F™. In order to determine whether or not V' is linearly independent, we
follow these steps.

1. Form the matrix A = [vy---vy] and row reduce it to REF. Call this
matriz B.

2. The set V' is linearly independent if and only if B has a pivot in every
column.
Example 5.1.15 Consider the following vectors in F3:

Vi V3 =

I
e
<
V)
|
= W N
— W

The set {vy,vs,v3} is linearly independent because the matrix A = [v; v V3]
has I3 as its RREF. O

Example 5.1.16 We consider the following vectors in R*:

-3 3.5 -5 5
|45 |5 _ | 28 _|o
V1 35 [0 V2 4]0 V8 2| V47 |os
45 2 —14 4

The set {v1, vy, Vs, v4} is linearly dependent, because the matrix A which has
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the vectors v; as its columns has the following RREF:

1 0 4 0
01 20
0 0 01
0 0 0O

|
Algorithm 5.1.14 only covers the situations when our vectors come from
some F™. In the case of other vector spaces, we will need to do more work.

Example 5.1.17 Consider the following three elements of Ps:
pr=1+t pp=t—1t> p3=2+2t+1t°

To determine whether or not the set {p1,p2, ps} is linearly dependent, we need
to return to the definition. Suppose that we have

c1p1 + cop2 +c3p3 =0

for some c¢q,co,c3 € R. In other words, this linear combination is the zero
polynomial, so we have

c1p1 + Ccopa + c3p3 = 04 0t + 0t2.
For these specific polynomials, this means we have

c1(141t) 4+ co(t — %) 4+ c3(2 4 2t + %) = 0 + 0t + 0t?
(c1 4 2¢3)1 4 (1 + co + 2¢3)t + (—co + c3)t? = 0 + 0t + 0t2.

Since the coefficients of the corresponding powers of ¢ must be equal on both
sides of this equation, we have a linear system to solve:

c1+2c3=0
c1+co+2c3=0
—CQ+03:0.

Our variables in this system are ¢;, c2, and c3, and we solve the system using
the techniques from Section 1.3. We find that

1 0 2 1 00

1 1 2| ~1]0 1 0

0 -1 1 0 0 1

This shows that the only solution to this linear system is the trivial one: ¢; =
¢1 = ¢3 = 0. That means that the set {p1,p2,ps} is linearly independent. [

We end this section with two additional results.

Corollary 5.1.18 A set of n vectors in F™ is linearly independent if and only
if that set spans F™.

Proof. Let A = [vy---v,] € M, (F). By Theorem 3.4.14, we know that the set
V' ={vy,...,v,} spans F" if and only if the RREF of A has a pivot in every
row. On the other hand, Algorithm 5.1.14 says that V’ is linearly independent
if and only if the RREF of A has a pivot in every column. Since A is a square
matrix, each of these happen exactly when the RREF of A is I,,. |

The following result appears to be little more than a slight restatement of
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the definition of linear dependence. However, the precise wording used in this
theorem turns out to be quite useful in proving some results later in the text.

Theorem 5.1.19 The Linear Dependence Lemma. Suppose {vi,...,v,}
s a linearly dependent set in a vector space V and that vi # 0. Then there
exists j € {2,...,n} such that v; € Span{vy,...,v;_1}.

Proof. Let {v1,...,v,} be a linearly dependent set of vectors in a vector space
V', and suppose that vi # 0. Then there exist scalars cq,...,c,, not all of
which are zero, such that

0=civi+ -+ cpvp.

Let k be the largest index such that ¢, # 0. It must be that k£ > 2 since we
assumed vi # 0. Then

CpVE = —C1V1 — -+ — Cgp—1VE—1-

Since ¢x # 0, we have

C Cl—
Vk:<_1)V1+'+(_ k 1>Vk}—1'
Ck Ck

This shows that vi, € Span{vy,...,vt_1} and completes the proof. [ ]

Note 5.1.20 It is important to record that Theorem 5.1.19 doesn’t say that
in linearly dependent sets every vector is a combination of the vectors that
preceed it. We merely have the existence of a vector with that property.

Reading Questions

1. For each of the following, determine whether the given set of vectors in
R3 is linearly dependent or linearly independent. (You should NOT need
to do any matrix row reduction to figure this out.) Refer to a fact or
theorem from the section when you are giving your answer.

(a) {v1,va} where

V1= 4 , Vo = *6
—10 15
(b) {v1,v2,v3} where
2 0 —8
Vi= -3 y V2 = 0 , V3= -9
(c) {v1,Vv2,V3,vq} where
2 —4 8 10
Vi= —3 y V2 = o y V3= -9 , Vg = 7

(d) {vy,va} where
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2. Determine whether the following sets in Ps are linearly independent. Ex-
plain your answers. You should not need to do any calculations.

(a) {1+¢,2%)
(b) {1,26*, =7 + 6%}
(¢) {2 —5¢t°,—4+10¢%}

Exercises

1. For each of the following, determine by inspection (without doing any
calculation) whether the given set is linearly dependent or linearly inde-
pendent. Explain your answers.

(a) {vi,v2} in R? where

2 3
vi=|-1|, va= |38
4 —4

(b) {p1,p2} in P, where

p1 =2t —4t?,  py = —t+2t°

(c) {v1,va} in F2 where

(d) {vi,v2,v3} in F2 where

ol el ol

(e) {vi,v2,v3} in R® where

1 3 0
vi=|=1|, vo=|=3|, vo=|-2
3 9 —4

2. Determine the value(s) of ¢, if any, that will make the set {vy,va,vs}
linearly independent in R3.

-3 4 [ 9
(@) vi=| 11|, vo=[-4], vg=|-11
|3 ] 3] .
oy F o -y
(b) vi= |3 |, vo=|—-6|, v3=|—-2
| 2 ] 4] .

3. Determine the value(s) of ¢, if any, that will make the set {vq,va,vs}
linearly dependent in R3, if
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4. How many pivot columns must a 6 x 4 matrix have if its columns are
linearly independent? Explain.

5. Determine whether the following statements are true or false. Justify your
answer either way.

(a) If V' = {vy1, vy} is a subset of a vector space V and va is not a scalar
multiple of vy, then V' is linearly independent.

(b) If V' ={vq,...,v4} is a subset of a vector space V and vs is not a
linear combination of v1, vo, and vy, then V"’ is linearly independent.

(¢) f V' = {vq,...,v4} is a subset of a vector space V and both
{v1,va,v3} and {va,v3,v4} are linearly independent, then V’ is lin-
early independent.

(d) V' ={vq,...,v4} is a subset of a vector space V and V' is linearly
independent, then {vy,vq, v3} is also linearly independent.

6. Determine whether or not the following set of vectors is linearly indepen-
dent in the given vector space.

(a) {v1,v2,vs} in R* if

3 4 4
o —2.5 . 1 B —1
V] = _5 , Vg = 1 , V3= 3
-1 —4.5 2.5
(b) {vi,vo,v3} in F2 if
1 2 0
V1= 3 , Vo = 1 , V3 = 0
0 4 4
(c) {v1,v2,vs} in F} if
1 0 1
vi=|1], vo= |1}, vg=]1
0 1 9

7. For each of the following subsets {p1, p2, p3} of P2, determine whether the
set is linearly dependent or linearly independent. Explain your answers.

(a) p1 = 34 5t2, py = =5 — 3t + 212, p3 = —4 — 5t — 24>
(b) p1=2—t+12 py = =345t — 1212, p3 = —2 — 2t + 82

Writing Exercises

8. Let T:V — W be a linear transformation between vector spaces.

(a) Prove that if {vy,...,v,} is a linearly dependent set in V, then
{T(v1),...,T(vy)} is a linearly dependent set in W.

(b) Prove that if T is injective and if {T'(v1),...,T(v,)} is a linearly
dependent set in W, then {vy,...,v,} is a linearly dependent set in

V.
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9. Suppose that V; and V5 are subsets of a vector space V. Prove that if
V1 € V5 and Vi is linearly dependent, then V5 is linearly dependent.

10. Let A € M, (F) and let T : F” — F” be a linear transformation.
(a) Prove that null(A) = {0} if and only if col(A) = F™.

(b) Prove that T is injective if and only if it is surjective.

11. Let V be a vector space over Q and let V' = {vy,...,v,} be a subset of
V. Prove that V' is linearly dependent if and only if there exist integers
c1,...,Cn, not all of which are zero, such that

civy+ -+ cpvy, =0.
12. Let A € M, »,(F) and suppose that null(A) # {0}. Prove that the set of
vectors that spans null(A) is linearly independent.

5.2 Basis of a Vector Space

We have previously examined when a set of vectors spans a vector space. In
this section, we will learn how to work with the most efficient spanning set
possible.

5.2.1 The Definition of a Basis

We begin with the notion of finite- and infinite-dimensional vector spaces.

Definition 5.2.1 A vector space V is finite-dimensional if there is a finite
set of vectors which spans V. A vector space is infinite-dimensional if it is
not finite-dimensional. O

We recall that linear independence in Section 5.1 was introduced as a way
to eliminate redundancy. We pick up on this idea in the next definition.

Definition 5.2.2 Let V be a finite-dimensional vector space. Then a set
B = {vi,...,v,} is a basis for V if B is a linearly independent set and if
V = Span{vy,...,v,}. O

Note 5.2.3 The notion of a basis exists for infinite-dimensional vector spaces,
but since the overwhelming majority of our work will be with finite-dimensional
spaces, we have only given the definition in that setting.

Example 5.2.4 We recall that e; is the vector in F" with a 1 in the ¢th
coordinate and zeros elsewhere. Then the set £ = {ej,...,e,} is a basis for
F™. If we form the n X n matrix with these vectors as columns, we see that it is
the n x n identity matrix. Since there is a pivot in every column, F is linearly
independent according to Algorithm 5.1.14. Then Corollary 5.1.18 tells us that
FE also spans F™. This proves that E is a basis for F™.

We call this basis the standard basis for F”. ]

Example 5.2.5 We now consider the set B = {1,¢,t?} within the vector space
P,. Since any vector in P, can be written as a(1) + b(t) + c(t?), it is clear
that B spans Py. It is also true that B is linearly independent: the set {1,¢}
is linearly independent since neither vector is a scalar multiple of the other.
And then since #2 is not a linear combination of 1 and ¢, we conclude that B is
linearly independent by (the contrapositive of) the Linear Dependence Lemma
(Theorem 5.1.19). This proves that B is a basis for Ps.

The analogous basis for P,, {1,t,...,t"}, is often called the standard
basis for P,. 0
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Example 5.2.6 Consider the following matrix A € M3 5(R):

3 -2 -4 -4 3
A=11 -2 1 1 2
0 0 4 0 —4

We will find a basis for null(A).
Following the procedure we first encountered in Example 3.4.5, we start by
finding the RREF of A:

100 -5/2 -2
A~l0 1 0 —7/4 —5/2
001 0 -1

We see that x4 and x5 are free variables, and that any vector x in null(A4) can
be written as

I (5/2)1‘4 + 2£C5 5/2 2
X2 (7/4)3’54 + (5/2)335 7/4 5/2
Xx= |x3| = T5 =z4| 0O | +a5| 1
Tq Ty 1 0
Ts T5 0 1

If we label the vectors

5/2 2
7/4 5/2
vi=1]0 and vo = | 1 |,
1 0
0 1

then we can see that null(A) = Span{vi,ve}. Further, we see that {vy,va}
is linearly independent (neither vector is a scalar multiple of the other), so
{v1,va} is a basis for null(A). O

Note 5.2.7 What we observed in Example 5.2.6 is true more generally. Since
the method we use to find a spanning set for null(A) always produces a linearly
independent set (see Exercise 5.1.12), this method will always produce a basis
for null(A).

Here is an example where we are looking at whether a set of two vectors is
a basis.

Example 5.2.8 It turns out that it is fairly easy to tell whether a set of two
vectors in R? forms a basis for R?. Since linear independence is easy to check
with two vectors—is either vector a scalar multiple of the other?—we can focus
on this characteristic. This means that the set {vy,vs}, where

e[ e[

is a basis for R2. Neither vector is a scalar multiple of the other, so the set is

linearly independent. And then Corollary 5.1.18 tells us that this set must also

span R2. (We could also easily see this by row reducing the matrix [v; va).)
On the other hand, the set W' = {w1, ws2}, where

e [t] w3
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is not a basis for R2. Since wo = —2w;, W’ is not linearly independent, so it
cannot be a basis. (]

Putting some facts together, there is a fairly straightforward condition for
when a list of vectors in F"™ is a basis for that space.

Proposition 5.2.9 The set {vy,..., v} is a basis for F™ if and only if the
RREF of the matriz [vy -+ Vy,] is I.

Proof. From Theorem 3.4.14 we know that the set V' = {vy,...,v,,} spans F™
if and only if the RREF of A = [v; - - - v,;;] has a pivot in every row. Additionally,
Algorithm 5.1.14 tells us that V' is linearly independent if and only if the RREF
of A has a pivot in each column. The only way a matrix in RREF can have

a pivot in every row and every column is if that RREF is the identity matrix.
|
We put this proposition into action in the following example.

Example 5.2.10 Let A € M3(F5) be the following matrix:

A:

= W

4 4
0 1
3 4

We will label column i in A as the vector v; € F3.
Since the RREF of A is

O O
o = O
O NN

the set {vy, vz, v3} is not a basis for F3.
On the other hand, if B € M5(F5) is the matrix

1 10
B={1 2 3f,
0 30
then the columns of B form a basis for F since the RREF of B is I3. O

5.2.2 The Properties of a Basis

Having a basis is a powerful tool. In particular, it guarantees a uniqueness
that is quite useful.

Theorem 5.2.11 The Unique Representation Theorem. A set of vectors
V' ={v1,...,Vn} in a vector space V is a basis for V if and only if each element
of V' can be uniquely represented as a linear combination of the vectors in V.

Proof. We will prove the forward direction of this biconditional statement
directly. Suppose that V' = {vy,...,v,} is a basis of V. Since V = Span(V’),
every vector in V can be written as a linear combination of the vectors in
V'. Let v be a vector in V, and suppose that v can be written as a linear
combination of the vectors in V' in two ways:

n n
V= E a;v; and v = E b;v;.
i=1 i=1
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We want to show that a; = b; for each 7, 1 < i < n. Since both of these
representations are equal to v, they are equal to each other, so we have

n

0= iaivi — i biVi = Z(az — bz)vz
i=1 i=1

i=1

Since V' is a linearly independent set (since we are assuming it is a basis), it
must be that a; — b; = 0 for each i. Therefore, a; = b; and the representation
of v is unique.
For the other direction, we suppose that every element of V' can be uniquely
represented as a linear combination of the vectors in V’. Since every element of
V can be represented as a linear combination of the vectors in V', we see that
V' spans V. Since every element in V can be represented uniquely as a linear
combination of the vectors in V', and since 0 € V can be represented as the
trivial linear combination of the vectors in V’, this means that V' is linearly
independent. (The trivial linear combination of vectors in V' is the only way
to obtain 0 as a linear combination of the vectors in V'.) Since V' is linearly
independent and spans V, this proves that V' is a basis for V. |
This next result shows us how to trim a spanning set down until we reach
a basis.

Theorem 5.2.12 The Spanning Set Theorem. Suppose that V is a
nonzero vector space and that V = Span(B) for some set of vectors B C V.

1. If B is a linearly dependent set and a vector w € B can be written as
a linear combination of the rest of the vectors in B, then Span(B) =
Span(B — {w}).

2. A subset of B is a basis for V.

Proof. We suppose that B = {v1,...,v,}. If B is linearly dependent, then by
the Linear Dependence Lemma (Theorem 5.1.19), there exists a vector vy, € B
such that v; can be written as a linear combination of the vectors vq,...,vg_1.
We suppose this combination is

Ve =a1Vi + -+ Qp_1Vi_1. (5.1)
Now suppose v is a vector in V. We have
V=01V1 4+ Ck—1Vk—1 + CkVE + Cht1Vit1 + - + CpVn. (5.2)

Using (5.1), we can substitute this expression in for vy in (5.2) and, once the
algebraic dust settles, we will have v written as a combination of the vectors in
B — {vi}. This shows that Span(B) = Span(B — {v;}). (Since B — {v;} C B,
it is true that Span(B —{vi}) C Span(B). The argument thus far in this proof
has established the other subset containment.)

If B is linearly independent, then it is already a basis for V. If it is linearly
dependent, then we can remove a vector according to the above procedure to
obtain a set By = B—{w} which still spans V. As long as there are two or more
vectors in the spanning set, we can repeat this process until we are left with
a linearly independent set and thus a basis. If the spanning set is eventually
reduced to a single vector, that vector will be nonzero since V' is nonzero, and
therefore that set will be linearly independent and therefore a basis. |

Corollary 5.2.13 Every finite-dimensional vector space has a basis.
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Proof. Since a finite-dimensional vector space by definition has a finite spanning
set B, Theorem 5.2.12 tells us that a subset of B will be a basis for the vector
space. |
While the proof of Theorem 5.2.12 provides a way to trim a spanning set
down to a basis, it does not offer a practical method for this process. The
following algorithm provides such a method for certain vector spaces.

Algorithm 5.2.14 Let V' = {vy,...,v,} be a set of vectors in F™. The
following steps result in a basis B for Span(V”).

1. Put the matrix A = [vy---v,] in RREF.

2. If column i in the RREF contains a pivot, then include v; in B.

Proof. We form the matrix A = [vy---v,]. If A is already in RREF, then
the non-pivot columns are linear combinations of the pivot columns that pre-
ceed them. So, those can be discarded and the pivot columns will be a basis,
according to Theorem 5.2.12.

We will complete the proof with a reminder about the effect of elementary
row operations on the columns of a matrix. If a column v, of A is a linear
combination of the columns that preceed it, then

k—1
Vi = g CiVj
i=1

for some scalars ¢;. This means that the column vector [¢;] is a solution to
the linear system represented by the augmented matrix [vq---vg_1 | vg]. One
of the earliest facts we learned about elementary row operations is that they
preserve the solution sets of linear systems, so the same vector [¢;] will be a
solution to the linear system represented by the RREF of [vy---vi_1 | vg].
This proves that the relationships between the columns of a matrix are the
same as the relationships between the columns of the RREF of that matrix.

So, if A is not in RREF, we can find the RREF of A, call it C. The non-
pivot columns of C indicate that the corresponding columns of A should not
be included in the basis. In other words the pivot columns of C indicate that
the corresponding columns of A are the ones that should remain to form the
basis. ]

Note 5.2.15 We emphasize here that the pivot columns in the reduced matrix
do not provide the vectors for the basis! The pivot columns merely provide the
instructions for which of the original vectors should be kept to form the basis.

Example 5.2.16 Consider the following matrix A € My 5(F5):

32 3 3 3
0 01 40
A_32012
0 0 2 31

We will find a basis for col(A) using Algorithm 5.2.14. When we put A into
RREF, we find

OO O
O O O =
o o = O
OO =N
o= O O
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The pivots are in columus 1, 3, and 5, so a basis for col(A) is {v1, v3, v5}, where

3

O WO
N O =W
_= oo w

|

We arrive at the end of this section with two helpful perspectives on a basis.

A basis can be formed by trimming a spanning set down until it is linearly

independent. Thus, a basis is a spanning set that is as small as possible. On

the other hand, a linearly independent set can always be enlarged until it

spans. Therefore, a basis is also a linearly independent set that is as large as
possible.

5.2.3 Reading Questions

1. Consider the set V' = {vy,vs,v3,v4} in R? where

-3 6 0 2
vV = 1 , Vo = 2 , V3 = 4 s, V4 = -2
4 1 -1 7

Find a basis for Span(V”). Follow Example 5.2.16 and explain your an-
Swer.
2. Determine whether or not the set {vy,vs,v3} forms a basis for IE‘?, where

4 ) )
V] = 1 , Vo = 0 , V3 = 6
0 0 2

Explain your answer.

5.2.4 Exercises

1. For each of the following, determine whether the given set of vectors forms
a basis for the indicated vector space.

(a) {v1,ve,vs} in R? if

-2 —4.5 4.5
vV = 0.5 , Vo = —2.5 , V3 = 1.5
-1 4.5 —4.5

(b) {v1,va} in FZ if

ol] e

pr =442+ 42, py=—3+4t, p3=2— 2 — 4t?
2.  For each of the following, determine whether the given set of vectors forms
a basis for the indicated vector space.

(¢) {p1,p2,p3} in P if
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(a) {v1,va,vs,v4} in R* if

0 —2 —4 3
-2 2 -2 0
Vi = IBE Vo = 1] V3 = 5 , V4= 1
-3 -2 —13 0

(b) {v1,v2,vs} in F§ if

1 1
vV = 0 , Vo = 1 , V3 = 1
2 0

(¢) {p1,p2,p3} in P if

p1 =343t —4t?, py=3—3t, p3 =12+ 6t — 12t
3. For each matrix A, find a basis for null(A) and col(A).
(a) A € M3 4(R),
-3 2 -2 0.5

A= 125 ) 15 )
-5 —-15 —-13 0.5

(b) Ae Mys(Fs),

S W N
N w o
N O
W w w
N O~

4 1 0

4. Produce a matrix A € Mj4(F5) which has two vectors in a basis for
null(A4) and two vectors in a basis for col(A).

5. Find a basis for Span{vy, vy, V3, v4,vs} C R4, if

-2 -2 2 3 12

-3 0 9 2 —16
vy = 921> Vo = —1|> V3 = 10| V4 = 4| Vs = 5

1 -1 1 9 1

6. Find a basis for Span{vy,vq,v3,vs,vs} C Fi, if

0 3 2 1 1
0 1 0 2 4
V1= 21> Vo = 30 V3 = ol Vy = 4| Vs = 3
3 0 2 2 3

7. Let V be the vector space of all functions R — R. Find a basis for the
subspace H, if

H = Span{sin(t), sin(2t), sin(t) cos(t)}.
8. Find a matrix A € M(R) such that

A=) 2 )= L]

Is A unique? Explain.
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9. Suppose that T : R? — R? is a linear transformation which satisfies the

following:
1 —1] 3
(| :[_21],T 0 :H,T 5 :[_32}
3 2 | 0
Calculate ~
-1
T 4
| 6

10. Find a subset of the following set which is a basis for Ps:

{t—1,6* =2t — 2, +1}.
Writing Exercises

11. Let T :V — W be a linear transformation between vector spaces, and let
B be a basis for V.

(a) Produce an example to show that T(B) does not need to be a basis
of W.

(b) Suppose that T is injective. Must T(B) be a basis for W? If so,
prove it. If not, produce a counter-example.

12. Suppose that {vq,...,v,} is a basis for a vector space V. Prove that
{vi+va,vo+vs,. o, Vi1 Vi, Vi }

is also a basis for V.

13. Prove or disprove: Every basis of P, must contain a polynomial of degree
2, a polynomial of degree 1, and a constant polynomial.

14. Write down a basis for M2(R). Prove that your set is a basis. (There

is no need to prove that Ms(R) is a vector space as this was covered in
Example 2.3.10.)

5.3 Dimension

In this section we will define the dimension of a vector space, finally delivering
on the promise made in the introduction to this chapter to describe an intrinsic
quality of vector spaces that allows a comparison between spaces.

5.3.1 The Dimension of a Vector Space

We are on the threshold of the definition of dimension. We will first present
a result that connects (for a finite-dimensional space) the number of vectors
needed for a spanning set to the concept of linear independence. We will omit
the proof.

Lemma 5.3.1 Suppose that V is a vector space and that V' C Span{vy,...vy}.
If {w1,...,wpn} is a linearly independent subset of V', then m > n.

We will now use this lemma to prove a result related to dimension.
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Theorem 5.3.2 Suppose that, for every n > 1, a vector space V' contains a
linearly independent subset of size n. Then V is infinite-dimensional.

Proof. We will prove the contrapositive. If V is finite-dimensional, then there
exists a set V' = {vy,..., v, } such that V = Span(V'). By Lemma 5.3.1, for
any n > m, V cannot contain a linearly independent set of n vectors. This
completes the proof of the contrapositive. |

This theorem gives us an introduction to our first infinite-dimensional ex-
ample.

Example 5.3.3 Let P be the vector space of all polynomials with real coef-
ficients. (We do not restrict the degree of polynomials in P.) For any n, P
contains the linearly independent set

{1,t,..., 7.

Therefore, by Theorem 5.3.2, P is infinite-dimensional. |

We now come to the bedrock result of this section, the result that makes
the definition of dimension possible.

Theorem 5.3.4 Suppose that {vi,..., vy} and {w1,...,w,} are both bases
for a vector space V.. Then m =n.

Proof. Since V' C Span{vy,...,v,,} and {wy,..., w,} is a linearly independent
set, Lemma 5.3.1 implies that m > n. However, since V' C Span{wy,...,w,}
and {vy,...,v,,} is a linearly independent set, Lemma 5.3.1 also implies that
n > m. Therefore, m = n. |

Even though a vector space may have a huge number of bases, all of those
bases have the same size. This is a number intrinsic to the vector space, not to
any specific basis of that vector space. This is what we mean by the dimension
of a vector space.

Definition 5.3.5 Let V be a finite-dimensional vector space. If V # {0},
then the dimension of V, written dim(V'), is the size of any basis of V. If
dim(V') = n, we say that V is n-dimensional.
If V = {0}, then we define the dimension of V to be 0. O
Two of the families of vector spaces we frequently discuss have easy-to-
determine dimensions, as the next two examples illustrate.

Example 5.3.6 Since {e1,...,e,} is a basis for F", then dim(F") = n. O

Example 5.3.7 Since {1,t,...,t"} is a basis for P,, then dim(P,) = n + 1.

|

The proofs of the next two results are a consequence of Lemma 5.3.1 and
will appear in the exercises.

Proposition 5.3.8 The dimension of any vector space is less than or equal to
the size of any spanning set.

Proposition 5.3.9 If a vector space V' is finite-dimensional and {w1, ..., w,}
is a linearly independent set in V, then dim(V') > n.

We will now begin to discuss dimension as a tool to compare vector spaces.
Linear transformations are the main way we relate vector spaces to each other,
so these next results will rely on that machinery.

Theorem 5.3.10 Suppose that V' = {vy,...,v,} is a basis for a vector space
V. Let {w1,...,wy} be a subset of a vector space W. Then there is a unique
linear transformation T : V. — W such that T(v;) = w; for each i, 1 <i <n.
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Proof. Given v € V, there exists a unique linear combination

n
VvV = E CiV;
=1

by Theorem 5.2.11. We define the function T' by

n
= E C;W;.
i=1

In words, we send a vector v to the linear combination of the w; vectors using
the same weights as those needed to form v from the basis V’. This gives
T(v;) = w; for each ¢, so we only need to show that T is a linear transformation.
Suppose that u,v € V with

n n
v = E cv; and u= E d;v;.
i=1 i=1

Then we have

T(u+v) (i ci +d;) )
i=1
= Z C;W; + Z d;w;
i=1 i=1

= T_(u) + T(v)_.

Now we let v e V and ¢ € F. Then, if

n

V= E CiVi,

i=1
we have

T(cv)=T <Z(CC’)V’>

i=1

3

1

(cci)w

<.

C C;W;

V).

We will complete the proof by justifying the claim that T is unique. Suppose
that 77 € L(V, W) with T'(v;) = w; for each i. Then, if v € V with

n
V= E Civi,
=1

3

T

Il
o

—~

we have . . .,
= T/ (Z Civi> = Z CiT/(Vi) = Z Ci;W;.
i=1 i=1 i=1

This shows that T'(v) = T'(v) for every v € V,so T' =T and T is unique. W
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The notion of alikeness that we use in linear algebra is when two vector
spaces are isomorphic. The reader may wish to consult Definition 3.1.12 for a
refresher.

Theorem 5.3.11 Let T € L(V,W) and let B = {v1,...,v,} be a basis for V.
Then T is an isomorphism if and only if T(B) = {T(v1),...,T(vy)} is a basis
for W.

Proof. We first suppose that T is an isomorphism. We want to show that

T(B) is a basis for W, so we begin with linear independence. Suppose that
c1,...,Cn € IF such that

0=> cT(v:).
i=1
Then we have
0= ZT(CiV’i) =T (Z Civi> .
i=1 i=1
Since T is injective, by Theorem 3.4.7 we must have

n
0= E CiV;.
i=1

But since B is a linearly independent set, we have ¢; = 0 for all ¢. This proves
that T'(B) is linearly independent.

We now prove that 7'(B) spans W. Let w € W. Since T is surjective, there
exists v € V such that T'(v) = w. Since B is a basis for V, we have

vV = zn: C;V;.
i=1
Then
n n
w=Twv)=T <Z civi> = Z i T(v;).
i=1 i=1

This proves that W = Span(T'(B)), so T(B) is a basis for W.

We now need to prove the other implication, and we assume that T'(B) is a
basis for W. We need to show that T is an isomorphism. To show that T is
injective, suppose that v € V such that T'(v) = 0. We have

n
V= E CiVi,
i=1

SO
n

n
0= T(V) =T <Z CiVZ'> = Z CZT(Vi)
i=1 i=1
But since T'(B) is a linearly independent set by assumption, this implies that
¢; = 0 for all i. This means that v =0, so T is injective.

To prove that T is surjective, we assume that w € W. Since T(B) spans W,
we have

W = zn: diT(Vi)
i=1

for some d; € F. We claim that if

n
V= E d;vi,
i=1
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then T'(v) = w. Here is the justification:

T(V)=T (Z d,—vi> = dT(v;) = w.
=1 i=1

This proves that T is surjective and is thus an isomorphism. |

When we view dimension as an intrinsic quality of a vector space that allows
comparison between spaces, we find something surprising about vector spaces
with the same dimension. They are essentially the same!

Theorem 5.3.12 Let V and W be finite-dimensional vector spaces over F.
Then dim(V) = dim(W) if and only if V and W are isomorphic.

Proof. Suppose that dim(V) = dim(W) = n. Let {vy,...,v,} be a basis
for V and let {wy,...,w,} be a basis for w. By Theorem 5.3.10, we can
find T € L(V,W) such that T(v;) = w; for each i, 1 < ¢ < n. Then by
Theorem 5.3.11, T' is an isomorphism.

To prove the claim in the other direction, suppose that T € L(V,W) is an
isomorphism. If {vy,...,v,} is a basis for V, then {T'(vy),...,T(v,)} is a
basis for W by Theorem 5.3.11. Thus dim(V') = dim(W). ]

Here is an immediate consequence of this result.

Corollary 5.3.13 Every finite-dimensional vector space over F of dimension
n s isomorphic to F™.

Example 5.3.14 Since P; is a three-dimensional vector space over R, R? and
P; are isomorphic. O

5.3.2 Dimension and Subspaces

If we know the dimension of a vector space, then we sometimes have a quicker
path to finding a basis for that space. This next result says that if we have a
spanning set of the same size as a basis, then it must be a basis.

Theorem 5.3.15 Suppose that V is a vector space with dim(V) =n > 0. If
B ={vy,...,vn} is such that V = Span(B), then B is a basis for V.

Proof. By The Spanning Set Theorem (Theorem 5.2.12), we know that a subset
B’ of B will be a basis for V. But since dim(V') = n, the size of B’ must be n.
Therefore, B’ = B and B is a basis for V. |

What is true in Theorem 5.3.15 for a spanning set is also true for a linearly
independent set. To prove that, however, we first need the analog to The
Spanning Set Theorem for linearly independent sets.

Theorem 5.3.16 Suppose that V is a finite-dimensional vector space and that
V' is a linearly independent set of vectors in V. Then there is a basis of V
which contains V.

Proof. Let V! = {vy,...v,} be a linearly independent set of vectors in V. If
V = Span(V”), then V' is a basis and we are done. If V' = Span(V”), then there
exists some vector v, 11 € V — Span(V’). By the Linear Dependence Lemma
(Theorem 5.1.19), the set Vi = V' U {vy,41} is linearly independent.

We can repeat this process. If V' = Span(V;), we are done; otherwise, we
create Vo = Vi U {v,42} in the same fashion that we created V;. We
can continue doing this, adding one vector at a time to this set and main-
taining linear independence. FEventually we must reach the point where
V =Span{vi,...,Vu,Vnt1,.-., Yotk }, since otherwise Lemma 5.3.1 would im-
ply that V is infinite-dimensional. |
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We now have the machinery necessary to state the following theorem. The
proof will appear in the exercises.

Theorem 5.3.17 Suppose that V is a vector space with dim(V') = n and that
B is a linearly independent subset of V of size n. Then B is a basis for V.

The final result of this section collects some facts about dimension and
subspaces which we will use in some of the sections that follow.

Theorem 5.3.18 Suppose that V is a finite-dimensional vector space and that
U is a subspace of V. Then the following hold.

1. The subspace U 1is finite-dimensional.
2. We have dim(U) < dim(V).
3. We have dim(U) = dim(V) if and only if U = V.

Proof. We will prove these facts in order. If the subspace U is {0}, then we
have nothing to prove. If not, then there is some non-zero vector u; € U. If
U = Span{u; }, we are done; if not, then there exists ug € U — Span{u; }. By
Theorem 5.1.19, the set {uj,us} is linearly independent. We can continue to
repeat this process. At each stage we have a linearly independent set U, =
{uy,...,ux}, and this cannot continue indefinitely since U is a subspace of
V', which is finite-dimensional. Thus this process must eventually stop when
U = Span(U;) for some j, and that proves that U is finite dimensional.
The space U is finite dimensional, so it has a basis B. This is a linearly
independent set of vectors in V', so Theorem 5.3.16 says that B can be extended
to a basis B’ of V. This means that B’ will have at least as many vectors in it
as B, so dim(V) > dim(U).
If U = V it is obvious that dim(U) = dim(V'), so we only need to prove the
claim in the other direction. We will prove the contrapositive, so we assume
U#V. Let B={uy,...,u,} be a basis for U. Since U # V, there exists a
vector vi € V —Span(B). By Theorem 5.1.19 the set {uy,...,u,, vy} is linearly
independent in V', implying that dim(V') > n+1. Therefore dim(U) # dim(V).
|

Example 5.3.19 We can apply this latest result to the vector space R?. The
familiar subspaces of R3 are all of the subspaces of R3.

1. The only subspace of dimension 0 in R? is the zero subspace {0}.

2. One-dimensional subspaces of R? are lines through the origin. These can
all be written as the span of a single (non-zero) vector.

3. Two-dimensional subspaces of R3 are planes through the origin. These
are all spanned by sets of two linearly independent vectors.

4. The only three-dimensional subspace of R? is R? itself.

5.3.3 Reading Questions

1. Consider the following vectors in R?:

v = m and vy = [—12] .

By inspection, why is the set {v1,va} a basis for R?? Explain your answer.
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2. Let vy, vo, v, and v4 be vectors in R3.

(a) The set S = {vi,va,Vv3, vy} is not a basis for R3, and there’s a very
short argument why. What is that argument?

(b) Must there be a subset of S which is a basis of R3? Why or why
not?
5.3.4 Exercises

1. Find the dimension of the subspace of R? consisting of all vectors whose
first and third coordinates are equal.

2. For each of the following sets of vectors in the given vector space, find the
dimension of the subspace spanned by that set of vectors.

(a) {v1,v2,vs,va} in R if

-8 5 44 -31
V], = 6 , Vo = 3 , V3 = —6 , V4 = 3
-1 -3 -9 7

(b) {vi,va,vs,va} in F if

2 0 4 3
V] = 0 , Vo = 3 , V3 = 2 , V4 = 1
0 2 3 1

3. For each of the following matrices A, determine the dimensions of null(A)
and col(A).

(a) Ace M4’5(R),

7 ) 73 0 11
2 -3 12 -7 =26
-3 6 -15 3 39
1 6 21 -3 25

(b) Ac M274(F5),

3130
A[1201}

4. Determine whether the following statements are true or false. Justify your
answer either way.

(a) If a set {v1,...,V;,} spans a finite-dimensional space V, and if V'
is a set of more than m vectors in V', then V' is linearly dependent.

(b) The vector space R? is a subspace of R3.

(¢) A vector space is infinite-dimensional if it is spanned by an infinite
set.
5. Determine whether the following statements are true or false. Justify your
answer either way.

(a) If dim(V') = m, then there exists a spanning set of m + 1 vectors in
V.

(b) If every set of m vectors in V fails to span V, then dim(V') > m.
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(¢) If m > 2 and dim(V') = m, then every set of m — 1 non-zero vectors
in V is linearly independent.

6. The first four Hermite polynomials are 1, 2¢, —2 + 4t2, and —12t + 8t3.
Show that the set of these polynomials is a basis for Ps.

7. The first four Laguerre polynomials are 1, 1 —¢, 2 — 4t + ¢, and 6 — 18t +
9t2 — 3. Show that the set of these polynomials is a basis for Ps.

Writing Exercises

8. Let A be a matrix.
(a) Prove that dim(null(A)) is the number of non-pivot columns in A.

(b) Prove that dim(col(A)) is the number of pivot columns of A.

9. Let V be the set of all functions R — R. Prove that V is infinite-
dimensional.

10. Suppose that T : V — W is a linear transformation between vector spaces
and that V is finite-dimensional. Prove that dim(range(T")) < dim(V).

11. Prove that C? is two-dimensional as a vector space over C but four-
dimensional as a vector space over R.

12. Prove Proposition 5.3.8.
13. Prove Proposition 5.3.9.
14. Prove Theorem 5.3.17.

5.4 Rank and Nullity

In this section we will connect dimension with the subspaces associated with
linear transformations (see Section 3.4).

5.4.1 Defining Rank and Nullity
We begin by defining the dimension of the range of a linear transformation.

Definition 5.4.1 Let T be a linear transformation. Then the rank of T,
denoted rank(T), is the dimension of the range of T*

rank(7T) = dim(range(T)).
The rank of a matrix A is the dimension of the column space of A:
rank(A) = dim(col(A)).

O
It may seem strange to define the same word in two ways. However, since
the range of T is exactly the column space of A when T is multiplication by
A, these two definitions coincide.
When A is an m x n matrix over F, its rows are vectors in F" and its
columns are vectors in F™. This is why the column space of A is a subspace
of F™. We can also examine the analogous space for the rows.

Definition 5.4.2 The set of all linear combinations of the rows of a matrix A
is called the row space of A. We denote this by row(A). O
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Note 5.4.3 Since the rows of A are the columns of AT, it is immediate that
row(A) = col(AT).

With the definition of the row space it is natural to wonder how the sizes of
the row and column spaces compare to each other. The following results will
help us settle this matter.

Proposition 5.4.4 If A and B are row equivalent matrices, then we have
row(A) = row(B). Further, if B is in REF, then the non-zero rows of B form
a basis for row(B) (and row(A)).

Proof. We will first show that row(A) = row(B) as sets. If A is reduced to B,
then the rows of B are linear combinations of the rows of A. (The elementary
row operations produce linear combinations of the original rows.) Therefore,
any linear combination of the rows of B can be written as a linear combination
of the rows of A. This proves that row(B) C row(A). Since all row operations
are reversible, we can use row operations to produce A from B, and this same
argument shows that row(A) C row(B). This proves that row(A4) = row(B).
If the matrix B is in REF, the nonzero rows are linearly independent because
no nonzero row is a linear combination of the rows below it. Here we are
applying the Linear Dependence Lemma (Theorem 5.1.19) to the nonzero rows
from bottom to top. Since the rows of B span row(B) by definition, the fact
that they are linearly independent means that they form a basis for row(B).
|

Theorem 5.4.5 Let A € My, »(F). Then rank(A) = dim(row(A)).
Proof. If we put A into REF, then Proposition 5.4.4 tells us that the number of
pivots is dim(row(A)) since that is the number of vectors in a basis of row(A).

However, the number of pivots in a REF (or the RREF) of A is also rank(A).
(See Exercise 5.3.4.8.) This proves that rank(A) = dim(row(A)). [ |

Note 5.4.6 This theorem says that rank(A4) = rank(A”). This theorem also
answers the question about the relative sizes of col(A) and row(A)—they are
the same!

Example 5.4.7 Consider the following matrix A € My 5(F5):

A:

= O = O
N O W N
O W = N
S W = =
O N W N

We will find a basis for row(A). Here is the RREF of A:

A~

o O O
OO = O
O = O O
O = N
O =N

We have used the RREF of a matrix in the past to find bases for the null space
and column space of a matrix. Now, we will use it to find a basis for the row
space. Proposition 5.4.4 tells us that the nonzero rows of this RREF are the
basis we seek, therefore a basis for row(A) is {v1,va, vs}, where

vi=[10044)]
vy =[01022]
vs=[00114]
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We have defined the dimension of the range of a linear transformation T,
so we now turn to the kernel.

Definition 5.4.8 If T is a linear transformation, then the nullity of T is the
dimension of the kernel of T. If A is a matrix, then the nullity of A is the
dimension of the null space of A. O

Note 5.4.9 As we saw with rank, these two uses of “nullity” coincide for the
situation when 7T is multiplication by A.

Some other texts use the notation null(A) to indicate nullity instead of null
space, as we have. We will not introduce any additional notation for the nullity,
but we will use dim(ker(T)) or dim(null(A4)) as appropriate.

5.4.2 The Rank-Nullity Theorem

The following theorem brings together the rank and nullity of a matrix/linear
transformation.

Theorem 5.4.10 The Rank-Nullity Theorem. If A € M,, ,(F), then
rank(A) 4+ dim(null(A)) = n.
IfT € L(V,W), then
rank(7T) + dim(ker(7T)) = dim(V).

Proof. We will prove the result for matrices. The proof for linear transforma-
tions is a bit more technical. (The reader should note that the result for linear
transformations implies the result for matrices!)

If A € My, ,(F), let B be the RREF of A. Then rank(A) is the number of
pivot columns in B. Further, dim(null(A4)) is the number of non-pivot columns
in B. (See Exercise 5.3.4.8.) Since each of the n columns of B must be either
a pivot or a non-pivot column, and since A and B have the same number of
columns, this proves the theorem. |

Example 5.4.11 If A is a 5 x 6 matrix with a three-dimensional null space,
this theorem tells us that the rank of A is 6 — 3 = 3.

Let us consider an additional scenario: Could a 6 x 8 matrix A have a
one-dimensional null space? If such a matrix existed, it would have a rank of
8 — 1 = 7, according to Theorem 5.4.10. But the largest rank that a 6 x 8
matrix can have is 6, since there cannot be more pivots than there are rows.
So the answer is no, a 6 x 8 matrix cannot have a one-dimensional null space.

O

When the dimensions of the domain and codomain of a linear transforma-

tion are equal, some properties of such a transformation coincide.

Corollary 5.4.12 If T' € L(V,W) and dim(V') = dim(W), then the following
are equivalent.

1. The transformation T is injective.
2. The transformation T is surjective.

3. The transformation T is an isomorphism.

Proof. By Theorem 3.4.7, T is injective if and only if ker(7T) = {0}. In other
words, T is injective if and only if dim(ker(T)) = 0. By Theorem 5.4.10,
this happens if and only if rank(7) = dim(V), and if dim(V) = dim(W),
rank(7T) = dim(W) if and only if T is injective. This proves that T is injective
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if and only if T is surjective. Since a bijective linear transformation is an
isomorphism, our proof is complete. |

To close out this section, we present a long theorem with many equivalent
statements. We will omit a proof, because the equivalence of most of these
statements has been already established at various places in this text. (In
other books, this theorem forms the central focus of the text. It is certainly
important, but we have chosen a different emphasis.)

Theorem 5.4.13 The Invertible Matrix Theorem. Let A € M, (F).
Then the following statements are equivalent.

1. The matriz A is invertible.

2. The matriz A is row equivalent to I,,.
3. The matriz A has n pivots.
4. The equation Ax = 0 has only the trivial solution.
5. The columns of A form a linearly independent set.
6. If Ty : F™ — F" is multiplication by A, then T is injective.
7. The equation Ax =b has a solution for all b € F™.
8. The columns of A span R™.
9. The linear transformation Ty is surjective.
10. There is an n X n matriz B such that AB = BA = 1,,.
11. The matriz AT is invertible.
12. We have det(A) # 0.
18. The columns of A form a basis for F™.
14. We have col(A) = F™.
15. We have rank(A) = n.

16. We have null(A) = {0}.

17. We have dim(null(A)) = 0.

This theorem ties together threads from almost every section we’ve covered,
which is quite an achievement! The reader should note that this result only
applies to square matrices.

5.4.3 Reading Questions

1. Consider the following matrix A:

2 0 2 4 0
A=|-1 1 -4 6 -7
6 3 -3 2 13

Find a basis for row(A). Explain your answer.

2. Suppose that T': V' — W is a linear transformation and that dim(V) =4
and dim(W) = 5. What are the possible values for dim(ker(7"))? Explain.
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5.4.4 Exercises
1. Find the rank and nullity of each of the following matrices.

(a) Ae M374(R),

(b) Ae 2\44’5(&?3)7

1 2210
1 2 21 1
A=191 9 0 1
2 1 2 0 2

2. Let D: P, — P,_1 be the differentiation linear transformation. Calculate
rank(D) and dim(ker(D)).

(a) If a 5 x 3 matrix A has rank 3, find dim(null(A4)), dim(row(A)), and
rank(AT).

(b) If the null space of a 7 x 6 matrix A is 5-dimensional, what is the
dimension of the column space of A?

(¢) If Ais a7 x 9 matrix, what is the smallest possible dimension of
null(A)?

4. Suppose a nonhomogeneous linear system of nine equations and ten vari-

ables has a solution for all possible constants on the right side of the

equations. Is it possible to find two nonzero solutions of the associated
homogeneous system that are not multiples of each other? Explain.

5. Suppose A € M, ,,(F) and b € . What has to be true about the two
numbers rank([A b]) and rank(A) in order for the equation Ax = b to be
consistent? Explain.

Writing Exercises

6. If A and B are matrices, prove that rank(AB) < min{rank(A), rank(B)}.
7.  Suppose that T' € L(V, W) and that V and W are both finite-dimensional.

(a) Prove that T is surjective if and only if rank(T") = dim(W).

(b) Prove that T is injective if and only if rank(7") = dim(V').

8. Suppose that Ax = b is a 6 x 6 linear system which is consistent but which
does not have a unique solution. Prove that there must be a vector ¢ € F°
such that the system Ax = c is inconsistent.

9. Prove that if T € L(V, W), then rank(7T) < min{dim(V"), dim(W)}.
10. Prove that if A € M,, ,,(F), then rank(A) < min{m, n}.
11. Let T € L(V,W).

(a) Prove that if dim(V') > dim(W), then T cannot be injective.

(b) Prove that if dim(W) > dim(V'), then T cannot be surjective.
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5.5 Coordinates

We have recently shown (Corollary 5.3.13) that all n-dimensional vector spaces
over [ are isomorphic to F™. In this section we explore the vast implications
of this isomorphism.

5.5.1 Coordinates of Vectors

If V is a finite-dimensional vector space over F, then it has a basis 5. We have
seen (Theorem 5.2.11) that each vector in V then has a unique representation
as a linear combination of these basis vectors. In the definition that follows,
we focus on the coeflicients in these linear combinations.

Definition 5.5.1 The coordinates of a vector v € V with respect to a basis
B = {vi,...,v,} are the unique scalars cy,..., ¢, such that

V=cVy+ -+ cpVp.
The coordinate vector of v with respect to B is the vector [v]g € F™,

C1

vVl =

O

Note 5.5.2 When the basis B we are using is unambiguous, we may drop a
bit of the cumbersome terminology contained in the phrase “coordinate vector
of v with respect to B” and simply refer to the “coordinate vector of v.”

This process of assigning to a vector v € V a vector [v]z € F™ is sometimes
called a coordinate mapping, and it defines a function V' — F". This
function is actually an isomorphism of vector spaces.

Theorem 5.5.3 Let V' be an n-dimensional vector space over F, and let B be
a basis for V. Consider the coordinate map Cp : V — F™ given by

Then Cg is an isomorphism.

Proof. The function Cp is a linear transformation. (We ask the reader to
verify this in the exercises.) We note that Cz maps the basis vectors in B to
the standard basis in F”. So, by Theorem 5.3.11, Cp is an isomorphism. BN

The existence of coordinate vectors means that just about everything for
finite-dimensional vector spaces can be accomplished with vectors and matrices
over F. We explore this in the following examples.

Example 5.5.4 Let B = {1,¢,t%} be the standard basis of the vector space
P, If p; and ps are

p1=2—t+4t? and p, = —3t% + 10,
then the coordinate vectors of p; and ps are

2 10

[pl]g = |-1 and [pg}g = 0
4 -3



CHAPTER 5. THE DIMENSION OF A VECTOR SPACE 131

Note that the order of the coordinates really matters, so in this case the terms
in pa had to be reordered (in increasing powers of t) before the coefficients were
entered as the coordinate vector. ]

Example 5.5.5 Within F3, consider W = Span{vy, va}, where

= and vy =

=W N
w o =

Since neither of these vectors is a scalar multiple of the other, B = {vy,vs} is
a linearly independent set and therefore a basis for W. If we let v3 be

w O

V3 =

o

we can verify that vs € W by row-reducing the appropriate matrix:

2 10 1 01
3 0 3] ~10 1 3
1 3 0 0 0 O

Since there is no pivot in the final column, we see that v3 € W. Further, we
can write down the coordinate vector of vs with respect to B by studying this
row-reduced matrix. We see that

[va]s = E] .

It may seem strange for a vector in the three-dimensional space F3 to have a
coordinate vector with only two entries, but this is due to the fact that W is
two-dimensional. (It has a basis of only two vectors!) The coordinate mapping
in this case says that W is isomorphic to F%, and this is why the coordinate
vector for any vector in W has only two entries. ]

There are some consequences of Theorem 5.5.3 that we want to spell out
explicitly because of their usefulness. The proof of the following proposition
can be found as part of the proof of Theorem 5.3.11.

Proposition 5.5.6 Let V' be a vector space of dimension m over F. Since
the coordinate mapping Cg : V. — F™ is an isomorphism, then the following
statements are true.

1. A set of vectors {vy,...,vp} in V is linearly independent if and only if
the set of coordinate vectors {Cg(v1),...,Cpr(vy)} is linearly independent
in F™.

2. A set of vectors {v1,...,v,} spans V if and only if the set of coordinate
vectors {Cg(v1),...,Cr(vn)} spans F™.

Hopefully the reader can now see exactly how helpful the coordinate map-
ping isomorphism is. The following example should help to connect the dots.

Example 5.5.7 Consider the set of vectors Y = {p1,p2,p3} in P3, where
pr=1—t—3t2+2
po = =5+ 4t +2t2 —¢3
p3 = 14 3t 4 4¢% — 3¢3.
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With respect to the standard basis B of Ps, these are the coordinate vectors:

1 -5 1
1 4 3
ils=| 5| [pels=1] 4 |, sls=1|,
2 -1 -3

By row-reducing the matrix which has these coordinate vectors as its columns,
we can see that the set of coordinate vectors {[pi]g, [p2]s,[ps]s} is linearly
independent in R*:

S o o
o o= O
o= OO

This shows that the set Y is linearly independent in Ps.

For dimension reasons, we already knew that the set Y cannot span Pj,
however this row-reduced matrix confirms it. Since there is not a pivot in each
row, the set of coordinate vectors does not span R*, and this means that ¥
does not span Ps. O

5.5.2 Coordinates and Linear Transformations

Back in Section 3.2, we showed how every linear transformation F" — F™
could be realized as multiplication by a matrix over F. We now bring that
understanding into contact with coordinate vectors. While not every linear
transformation between vector spaces is multiplication by a matrix, every linear
transformation between finite-dimensional vector spaces can be represented as
multiplication by a matrix when considering the relevant coordinate vectors.

Definition 5.5.8 Let V' and W be n- and m-dimensional vector spaces over F,
respectively, and let T': V' — W be a linear transformation. Further, suppose
that B = {vy,...,v,} is a basis for V and C = {wy,...,w,,} is a basis for W.
If, for each j, 1 < j < n, we have aq;,...,an; as the coordinates of T'(v;) with
respect to C, then the matrix of T' with respect to B and C is the matrix
A = [a;;]. (In other words, column j of this matrix is the coordinate vector
[T'(v;)]c.) We denote this matrix as [T]z.c.

When V = W and B = C, then we use the notation [T]p and refer to the
matrix of T with respect to B.

Finally, when the basis/bases we are using are unambiguous, we may refer
to [T]g or [T]s,c as the coordinate matrix of 7' O

The point of this rather long (and cumbersome!) definition is that we can
represent a linear transformation 7" as multiplication by a matrix. That’s what
the following proposition shows.

Proposition 5.5.9 Let T : V — W be a linear transformation between finite-
dimensional vector spaces. Suppose that V and W have bases B and C, respec-
tively. Let A= [T|g,c. Then, for anyv eV,

[T(v)lc = Alv]s.

Proof. Let the bases B and C be B = {vy,...,v,} and C = {wy,...,w,,}. For
v € V, suppose that
V=2CV]+ -+ CpVy,
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or, in other words,

Vls =

We also assume that, for each j, 1 < j < n, the coordinates of T'(v;) with
respect to C are aij,. .., 0m; .
Then, using the linearity of T', we have

n

T(V) = ZCjT(Vj) = ch (Z aijwi> = L Z AijCj | Wy

j=1 j=1 J=1

This says that the sth coordinate of T'(v) with respect to C is ) a;jc;, which
is the same as the ith entry of A[v]z. [ |

Note 5.5.10 According to this proposition, here is the way to realize a linear
transformation as a matrix. Form [Tz ¢ by calculating the coordinate vector
[T'(v;)]c for every vector v; € B. Then, to use this matrix to determine what
happens to a vector v € V, find the coordinate vector [v]g. After multiplying
this vector by [T]g,c, the result will be the coordinate vector [T'(v)]c. In order
to recover the value of T'(v), use the basis vectors in C and this coordinate
vector to find the correct linear combination.

Example 5.5.11 Let D : P; — P, be the differentiation function. (We proved
that a very similar function was a linear transformation in Example 3.1.3.) Let
B be the standard basis for Ps, and let C be the standard basis for P,. Here we

calculate the coordinate vectors for the derivative of each of the polynomials
in B:

0 1 0 0
[DW)e = |0|, [D®]c= |0]. [D(E)]c=|2|, [DE)]c= |0
0 0 0 3

These coordinate vectors form the columns of the matrix [D]gc.
We will now use this matrix to carry out the action of D. Let’s take the

derivative of p = —2 —4t —t2 —t3. Since the coordinate vector of p with respect
to B is
-2
—4
Pls=1_11]"
-1

we can multiply this vector by [D]gc to get [D(p)]c:

0100 :i —4
[DE)e=10 0 2 0] || =|-2
000 3| | [-3

This tells us that the coordinates for D(p) with respect to C are —4, —2, and
—3. In other words,

D(p) = —4(1) — 2(t) - 3(t*),

and this matches what we know to be the derivative of p. O
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Example 5.5.12 We consider a linear transformation 7" : R3 — P» defined by

a
T [b] | =(a+2b)+ (=3a+4b—c)t + (2a — 4c)t>.
C

We let B be the standard basis for R® and C be the standard basis for P,. We
now write [T'(e;)]c for each e; € B:

1 2 0
[T(e)le = |-3|, [T(e)]lc=|4]|, [T(e3)lc=|-1
2 0 4

These coordinate vectors make up the columns of the matrix [T]pc. If we
wanted to calculate T'(v), where

we could do so using coordinate vectors and the matrix [T]gc. Since the
coordinate vector of v with respect to B is fairly obvious—it is v itself—we can
proceed with this calculation:

1 2 0 1 -5
[TW)e=Tlgeclvls=|-3 4 -1| |[-3]| =|-19
2 0 —4| |4 14
This tells us that T'(v) = —5 — 19t — 14¢2. 0

We will end this section with two results related to coordinate matrices.
This first result says that the composition of linear transformation really does
match up with the multiplication of matrices.

Theorem 5.5.13 Let U, V, and W be finite-dimensional vector spaces with
bases B, C, and D, respectively. Suppose that T € L(U,V) and that S €
L(V,W). Then
[ST)sp = [Slep[T]s,c-
This final result states that the invertibility of a linear transformation and
the invertibility of its coordinate matrix are tied together in the predictable
way.

Corollary 5.5.14 Let V and W be finite-dimensional vector spaces with bases
B and C, respectively. Suppose that T € L(V,W) and that A = [T|g¢c. Then
A is invertible if and only if T is invertible, and in that case, [T~ ez = AL

5.5.3 Reading Questions
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1. Letvy = B} and vy = [_11}

(a) The set B = {v1,va} is a basis for R2. Without doing any calcu-
lations, explain why this is so. (I'm not looking for the definition
of a basis, I want an explanation as to why this set satisfies that
definition.)

(b) Let w = {2

2. Let T : P, — P; be the following function:

] . What is the coordinate vector of w with respect to B?

T(p) = p(—1) + p(0)t + p(1)¢*.
Let B be the standard basis for Ps.
(a) Find the coordinate matrix [T|g for T.

(b) Use this coordinate matrix to calculate T'(q), if

g=—3—5t+3t%

5.5.4 Exercises

1. For the given basis B of R? and the given coordinate vector [v]s, find v.

w ms= |2} 5=1{ 3] | 7]}
o vs= | ) 5= { 3] 3]}

2.  For the basis B = {p1,p2,p3} of P, and the coordinate vector [p]z, find p

if
pL=2—4t% po=—1—t, ps=3t+ 2>
and
-2
pls=10
5

3. Find the coordinate vectors [v]g for each of the following vectors v with
respect to the basis B = {vq, v, v3} of R3, if

-2 7 2

vi= |5 |, vo=|4], v3=|-T7

3 —4 2
F 16
(a) v=1 5
__16_
R
(b) v=[-23
_11_

4. Find the coordinate vectors [p]g for each of the following polynomials p
with respect to the basis B = {p1,p2,p3} of Py, if

pr =8+ 4t —4t? py =5+ 8t + 3t%, p3 = —6 — 2t — 5t°.
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(a) p= —2+ 2t — 23¢*
(b) p =23 + 28t + 5t

5. Use coordinate vectors to test the linear independence of the following
sets of polynomials in Ps.

(a) {Plapzaps} if
p1 = —6+ Tt + 6t% + 3t3
po = 2t — 42 + 7t3
p3 =2+ 6t —t2 — 5t

(b) {p17p27p3} if
p1=6+T7t—t> -2t
p2=—5—Tt—6t> +8t°
ps =T+ 7t — 82 + 4¢3
6. Use coordinate vectors to test whether the following sets of vectors span
Ps.
(a) {p17p27p37p4} if
pr=—4+t+1t7
p2 = 3+ 5t + 1
p3 = —2 — 4t + 217
pa=2—4t — ¢

(b) {p17p27p57p4} if
p1 = 4 + 6t + 5t
po = —3t2
p3 =4+ 6t — 4t>
ps = 8+ 12t + t2

7. Let T : P, — R? be the linear transformation

_ |p(0) +p(1)
T(r) = [pa) - p<2>] '

Let B be the standard basis for P, and let £ be the standard basis for R2.
(a) Find the coordinate matrix [T)p.¢.

(b) Use this coordinate matrix to calculate T'(—10 + 3t2).
8. Let T :R3 — P, be the linear transformation
a

T o] ] =2a—b)+(b—3c)t+ (a—0b+c)t?
C

Let € be the standard basis for R3 and let B be the standard basis for Ps.

(a) Find the coordinate matrix [T)¢ 5.
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(b) Use this coordinate matrix to calculate T'(v) for

2

9. Let T : P, — P, be the linear transformation
T(p) = p' + p(1)t*.
Let B be the standard basis for Ps.

(a) Choose a basis C for P, which is not the standard basis. Prove that
your set of polynomials is a basis.

(b) Find the coordinate matrix [T]c p.

(c) Use this coordinate matrix to calculate T'(2 + ¢ — 4t2).

10. Let D : P3 — P, be the derivative and let T : P, — P3 be the linear
transformation which is multiplication by ¢. Let B be the standard basis
for P, and let C be the standard basis for Ps.

(a) Find the coordinate matrix [T]gc.
(b) Find the coordinate matrix [DT]z.

(¢) Find the coordinate matrix [T'D]c.
11. Consider the plane P in R3 defined by # — 2y + 3z = 0.

(a) Find a basis for P.

(b) Determine whether each of the following vectors is in P, and for
each one that is, find its coordinate vector in terms of the basis you
gave in part a.

Lovy=(1,-1,-1)
i ovo = (2,3,1)
iii. v3 = (5, -2, —3)

Writing Exercises

12. Prove that the coordinate mapping in Theorem 5.5.3 is a linear transfor-
mation.

13. Without using Theorem 5.3.11, prove that the coordinate mapping in
Theorem 5.5.3 is injective.

14. Without using Theorem 5.3.11, prove that the coordinate mapping in
Theorem 5.5.3 is surjective.

15. Let T : V — W be a linear transformation between finite-dimensional
vector spaces, and let B and C be bases for V' and W, respectively. Prove
that rank(T") (the rank of T as a linear transformation) is the same as
rank([T]z ) (the rank of the coordinate matrix of T').

16. Prove Corollary 5.5.14.
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5.6 Change of Basis

Every basis for a vector space gives a different angle on that space—we get a
different coordinate system for each basis. Since any finite-dimensional vector
space has many bases, in this section we explain how to move between bases.

5.6.1 The Change-of-Basis Matrix

We will first describe a situation in which this technique will be useful. Consider
the following two bases for R?: B = {vy,va} and C = {w1,wa}, where

an) o] o[ e

We can verify that B and C are bases for R? since they are both linearly
independent sets of two vectors in a two-dimensional space.

If we have a vector v € R?| it is straightforward to calculate both [v]z and
[vlc. The question for us is: how do these two coordinate vectors relate to
each other? Specifically, how might we calculate one coordinate vector from
the other one?

It turns out that we already have the necessary machinery for this calcula-
tion. We summarize the process in the following proposition.

Proposition 5.6.1 Let B and C be two bases for a finite-dimensional vector
space V. Then, for any v € V, we have

Ve = I]g,c[v]s,

where I : V. — V is the identity transformation.

Proof. This is a simple application of Proposition 5.5.9 to the identity trans-
formation I:

Ve = [I(v)lc = []p,c[v]5-
]

Definition 5.6.2 If B and C are two bases for a finite-dimensional vector space
V, then the matrix Pg¢ = [I]g,c is called the change-of-basis matrix from
Bto C. O

Example 5.6.3 We will continue the example begun earlier in this section. If
B = {vy,v2} and C = {wy, w2}, then we can calculate Pg ¢ by determining the
coordinate vectors [vi]c and [va]c. We need only to row-reduce two matrices:

R ey P e Y Pyl

From these calculations, we can see how to write the B-basis vectors in terms
of the vectors in C, and these form the columns of our change-of-basis matrix:

[2/5 2/5] .

Pse=|_1/5 4/

)

. 2| . . .
We now consider a vector v = { } in R2. We can calculate [v]5 in this way:

3

[_11 (2) zﬂw[é (1) 532}
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Now that we have [v]g = {5?2
[Vie:

-t [ 3113 (3]

We can verify that this is the correct coordinate vector for v by calculating it
directly:
-2 -1 2 1 0 -9/5
1 3 3 0 1 8/5]°
O

Example 5.6.4 We consider the vector space P5. Let C be the standard basis
for Py and let B be the set {p1,p2,ps}, where

} , we can use the change-of-basis matrix to find

pr=241t, ps=—1—t+2t2 p3=—2t+3t%

In order to find the change-of-basis matrix, we need to write the coordinate
vectors of the basis vectors of B with respect to C. But since C is the standard
basis of Ps, this is an easy task to complete. Here is the change-of-basis matrix:

2 -1 0
Pge= |1 -1 -2
0 2 3

O

What we saw in Example 5.6.4 is an indication that some change-of-basis

matrices are easier to calculate than others. In particular, when the standard
basis is the target (not the source) basis, the matrix is almost immediate.

Lemma 5.6.5 Let € be the standard basis of F™, and let B be any other basis
of ™. Then the columns of Pg ¢ are the vectors of B, in order.

Proof. If B = {vi,...,v,}, then column j of Pg¢ is [v;]¢. But since £ is the
standard basis, then [v;]e = v,. [ |

The next lemma also shows that the change-of-basis matrices from one basis
to another and back again have the inverse relationship we might expect.

Lemma 5.6.6 Let B and C be two bases for a finite-dimensional vector space
V. Then the relationship between the two change-of-basis matrices is

Pes=(Pse) '
Proof. Since Pg ¢ = [I|g,c, by Theorem 5.5.13 we have
Pgcllle,s = [{cllles = cc = In-
Since Pgc is square, this proves that [I]¢c s = (Pgc) ™ . [ ]

Example 5.6.7 We consider two bases for F3: the standard basis & and
B = {vy,va,v3}, where

4 3 0
vy = 2 , Vo = 1 , V3 = 4
2 0 1

(The reader should verify that B is a basis for F3.)
Lemma 5.6.5 tells us that the change-of-basis matrix Pg ¢ is easy to write
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down:

Pge =

DN DN
O = W

0
4
1

Then Lemma 5.6.6 says that Pe g = (P&g)_l, so we can find that matrix
without too much difficulty as well:

31 1
Pep= (3 2 2
4 3 4

O

The final results of this section deal with linear transformations. This the-

orem relates the coordinate matrix for a linear transformation to the situation
in which we want to change bases in the domain and codomain.

Theorem 5.6.8 Let V' and W be finite-dimensional vector spaces, and let
T € L(V,W). Additionally, let By and Bs be bases for V, and let C1; and Co be
bases for W. Then

[T]B27C2 = [I]C17C2 [T]Bl ,C1 [1}52,31 .
Proof. We will use Theorem 5.5.13:

(TB,.c, = UT1]By.co = ey .cx[T)By ¢, 11528, -

|
The most important (and most common) use of this theorem happens when
V= W, Bl :C1, and BQ :CQ.

Corollary 5.6.9 Let B and C be bases for a finite-dimensional vector space V,
and let T € L(V). Then

[Tle = (Pes) '[T]sPe.5.

Proof. This result is due to Theorem 5.6.8 and Lemma 5.6.6. |

We will end this section with an example which takes advantage of Corol-
lary 5.6.9.

Example 5.6.10 We consider the linear transformation 7' : R? — R? which
is reflection across the line y = %m While the action of T is not impossible to
write down in the usual coordinate system, it is even easier using the alternate

basis B = {vy,va}, where
2 -1
Vl - 1 ) V2 - 2 .

To see why this linear transformation is easier to describe in the B-coordinates,
we recall how easy reflection across the y-axis is to describe relative to the
standard basis—simply negate the first coordinate! The B-basis vectors in this
case lie on the axis of reflection and along the line perpendicular to that axis.

We note that T'(vy) = v; and that T(vy) = —vo. This shows that the
coordinate matrix of T with respect to B is
1 0

(Writing the action of T this way makes it especially easy to see that perform-
ing this transformation twice puts us back where we started.) We will use
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Corollary 5.6.9 to calculate the matrix for T relative to the standard basis.
That is, we wish to calculate [T]¢.
We first note that the matrix P ¢ is, according to Lemma 5.6.5,

2 —1
ree=t 7.
Then, with the help of Lemma 5.6.6, we have

R R A

We can put these together to find [T]¢:

2 —1|(1 0 2/5 1/5 3/5 4/5
[Tle = PoelTsles = {1 2} {0 —1} {—1/5 2/5} - [4/5 —3/5] '
The action of the transformation, as written in the final line here, is perhaps
better understood in words rather than symbols. To reflect across the line
y = %x, first shift from the standard coordinates to the alternate B-coordinates.
(This is accomplished by Pg 5.) In this new coordinate system, the action of T
is easily described. (Thus, [T]g.) After that action is carried out, then we shift
back to the standard coordinate system. (That is the work of Pz¢.) From

start to finish, this gives us a matrix which carries out the action of T relative
to £. |

5.6.2 Reading Questions

1. Letvy = [;} vy = [11}, w1 = {_21], and wy = E] Consider the bases

B ={vi,v2} and C = {wy, wa} of R
Find the change-of-basis matrix Psc.

2. Using the definitions of the vectors and bases from the previous reading
question, find F¢ 3.
5.6.3 Exercises

1. Let B={vy1,v2} and C = {wy, w2} be bases of R?, where

il F PR | B P B

Find the change-of-basis matrices Pg ¢ and F¢ g.

2. Let B= {vi,vy,v3} and C = {wy,wa, w3} be bases of F§, where

4 2 3
V], = 3 , Vo = 2 , V3 = 1
3] 0 3
[4] 4 4
Wi = 2 , Wo = 1 , W3 = 2.
14 4 L

Find the change-of-basis matrices Pg ¢ and F¢ g.
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3. Consider the basis B = {vi, vy} of F2 where

-] B

(a) If € is the standard basis for F%, find P ¢ and P 5.

(b) Use your work in part (a) to find [v]g if v = E]
4. Let B={p1,p2,p3} be a basis for P,, where
pr=3t—5t%, po=3—3t+5t%, py3=—1—t—t>.
(a) If € is the standard basis for P, find Pg ¢ and Pt 3.

(b) Use your work in part (a) to find [p|g if p = —3 + 3¢ + 2¢2.

5. Consider the linear transformation T : R2 — R? which is projection onto
the line y = —x.

(a) Propose a basis B for R? where [T]5 will be easy to determine.
(b) Find [T]5.
(c) If € is the standard basis for R?, find Pg ¢ and Pg p.

(d) Using your work in previous parts of this problem, find [T]¢.

6. Consider the linear transformation 7" : R2 — R? which is reflection across
the line y = —%I.

a) Propose a basis B for R? where [T]g will be easy to determine.

(a)
(b) Find [T]5.
)

)

(c) If € is the standard basis for R?, find Pg ¢ and Pe p.

(d) Using your work in previous parts of this problem, find [T]¢.

Writing Exercises

7. Let V be an n-dimensional vector space over F, and let 5 and C be two
bases for V. Prove that the columns of the matrix Pg ¢ are linearly inde-
pendent.

8. Let V be an n-dimensional vector space over F, and let B and C be two
bases for V. Prove that the columns of the matrix Pg ¢ span F".

9. Let A € M, (F) be invertible. Prove that there exist bases B and C for F”
such that A = Pgc.



Chapter 6

Eigenvalues and Eigenvectors

6.1 Eigenvalues and Eigenvectors

For linear transformations T : V' — W, there isn’t often a connection between
v and T'(v) that is easy to describe. These vectors, after all, live in different
vector spaces, so they need not have any obvious relationship to each other.
When W =V, we sometimes have a different story to tell (for some vectors).
For a transformation T € L(V'), v and T'(v) live in the same vector space, so
there is occasionally an easy-to-define relationship between these two vectors.
Sometimes, the action of T on a vector turns out to be rather simple.

6.1.1 Defining Eigenvalues and Eigenvectors
We first define the sorts of vectors we alluded to in the previous paragraphs.

Definition 6.1.1 Let V be a vector space over IF, and let T' € L(V'). A nonzero
vector v € V is an eigenvector for T if T(v) = Av for some A € F. A scalar
A is called an eigenvalue of T if there is a nontrivial solution to the equation
T(x) = Ax. Such a solution is called an eigenvector for T corresponding
to A\

If A € M,(F), the eigenvectors and eigenvalues of A are the eigenvectors
and eigenvalues of the transformation 7' € L(F™) defined by T'(x) = Ax. O

Informally, eigenvectors for T" are nonzero vectors on which 7" acts by scalar
multiplication. The next example shows that for a 7' that has eigenvectors, it
is not (always) every vector in V that has this special property.

Example 6.1.2 When we are given a matrix A and a vector v, it is easy to
determine whether or not v is an eigenvector for A. Consider the following:

3 0 4 -2
R ]
We take the product Au,
3 0][4]  [i2
7o=1| |7 " |21|°

Since Au = 3u, u is an eigenvector for A with eigenvalue 3. Also, since

3 0] (-2 —6
= 57 -]
we can see that v is not an eigenvector for A, because Av is not a scalar multiple

of v. O

143
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When v is an eigenvector of T, then applying 7" may change the length
of v but it will not change the direction of v. (To say this we must include
“pointing in the exact opposite direction” as being in the same direction.) This
is a simplification, because not every vector space has a neat, geometric inter-
pretation.

Example 6.1.3 Let T : P, — P, be the following linear transformation:
T(a+ bt + ct?) = (da — b+ 6¢) + (2a + b+ 6¢)t + (2a — b + 8¢)t>.
If p=1+t+t2, it is not difficult to check that
T(p) =9+ 9t + 9t = 9p.

Therefore, p is an eigenvector for 7' with eigenvalue 9. ]

Example 6.1.4 Let T : R? — R? be the linear transformation which is coun-
terclockwise rotation about the origin by an angle of #. We can see that T will
have an eigenvector if and only if 8 is an integer multiple of 7 radians. If 4 is
an even integer multiple of 7, then every vector in R? is an eigenvector for 7'
with eigenvalue 1, and if € is an odd integer multiple of 7, then every vector
in R? is an eigenvector for 7' with eigenvalue —1. ]

We take a slightly different approach in our next example. Instead of veri-
fying that a vector is an eigenvector, we provide the eigenvalue and then search
for the eigenvector(s).

Example 6.1.5 We consider the matrix A from Example 6.1.2. Let’s show
that —1 is an eigenvalue of A and find the corresponding eigenvectors.

We know that —1 is an eigenvalue of A if the equation Ax = —x has a
nontrivial solution for some x € R%. This is equivalent to saying that the
equation Ax + x = 0 has a nontrivial solution. We can also view x as Ix, so if
—1 is an eigenvalue of A, there is a nonzero vector x which satisfies

(A+ I)x = 0. (6.1)

Viewed from the correct angle, we have reduced this problem to finding the
null space of a matrix.
We will calculate A + I:

3 0 10 4 0
A+1_{7 —1}+{0 1}_{7 0]
We can see that the columns of (A + I) are linearly dependent, so we know
that (6.1) has nontrivial solutions. This proves that —1 is an eigenvalue of A.

In order to find the eigenvectors of A that correspond to A = —1, we describe
the null space of the appropriate matrix. We row-reduce (A + I):

F ol

This shows that every eigenvector of A corresponding to A = —1 has the form

To {(1)], as long as g # 0. The interested/vigilant reader can check that, for

example, A B} = [_03] O

The process we undertook in the previous example showed that there are
almost always multiple eigenvectors for a linear transformation which corre-
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spond to a specific eigenvalue. In fact, the collection of such vectors forms
almost an entire subspace.

Theorem 6.1.6 Let V' be a vector space over F, let T € L(V), and let A\ € F
be an eigenvalue of T'. Then the set of all eigenvectors for T corresponding to
A, along with the zero vector, is a subspace of V.

Proof. We note that a nonzero vector v € V is an eigenvector for 1" corre-
sponding to A if and only if T'(v) = Av. The vector v satisfies this equation if
and only if T'(v) — AI(v) = 0, which is true exactly when (T'— AI)v = 0. This
shows that a nonzero v is an eigenvector for 7' corresponding to A if and only
if v e ker(T — AI).

Since we already know (Theorem 3.4.2) that the kernel of a linear transforma-
tion is a subspace, this completes the proof of this theorem. |

Note 6.1.7 The awkwardness in the statement of this theorem regarding the
zero vector is only present because the zero vector (by definition) cannot be an
eigenvector.

This previous theorem justifies the following definition.

Definition 6.1.8 Let V be a vector space and let T € L(V). If A € F is an
eigenvalue of T, then the eigenspace of T' corresponding to A is the subspace
of V defined by

eigy(T)={veV |T(v)= v}

We will sometimes refer to the eigenspace corresponding to A as the A-
eigenspace. O

In the following example, we will calculate the eigenspace corresponding to
an eigenvalue.

Example 6.1.9 We consider the following matrix A:

4.5 —-2.5 =25
A=125 —-05 —-25
5 -5 -3

Let T' € L(R?) be multiplication by A. If we know that A = 2 is an eigenvalue
for A, we can calculate a basis for eig,(T).
We need to form the matrix A — 27 and then find the RREF:

25 =25 =25 1 -1 -1
A—-2[= (25 =25 -=-25|~10 O 0
) ) -5 0 0 0

The presence of free variables here confirms that 2 is an eigenvalue of A. If
x € null(A — 2I), then

X1 To + I3 1 1
X= |x9| = To =x9 |1| +23 |0
T3 T3 0 1

From this calculation we can see that eig,(7) is two-dimensional, with basis
B = {vy,va}, where

1 1
vi=|1]|, and vo = |0
0 1
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6.1.2 Results About Eigenvalues and Eigenvectors

In general, the eigenvalues of a linear transformation are not easy to spot.
There are some situations, however, when we can identify eigenvalues at a
glance.

Theorem 6.1.10 The eigenvalues of a triangular matrizx A € M, (F) are the
entries on the main diagonal of A.

Proof. Suppose A € M, (F) is an upper triangular matrix. Then A — A is

aip — A a2 a13 ce Q1n
0 agz — A a23 aon
A— )N = 0 0 as3 — A - azn

We can see that X is an eigenvalue for A if and only if null(A — AI) # {0}, and
this happens if and only if A — A\I has at least one non-pivot column. Because
A (and therefore A — \I) is upper triangular, A — AI has at least one non-pivot
column if and only if at least one of the entries on the main diagonal of A — \I
is zero. This happens if and only if A equals one of the entries on the main
diagonal of A.

We have saved the case of a lower triangular matrix for the exercises. |

Example 6.1.11 If A € M5(F5) is given by

A:

S O =~
SN O
— W W

the eigenvalues of A are 4, 2, and 1. The reader might use this opportunity to
find the associated eigenvectors/eigenspaces! (]

Of all possible scalars A € F, it is especially noteworthy when A = 0 is an
eigenvalue for T € L(V). In this situation, there is a nonzero vector x such
that T'(x) = 0. In other words, x is a nonzero vector in ker(T).

This short argument establishes a connection between the injectivity of T'
and the presence of A = 0 as an eigenvalue for T'. Because of previous results,
we have the following theorem. (We leave the proof of both statements in this
theorem as exercises so the reader might get practice connecting the logic of
various chapters of the book.)

Theorem 6.1.12 Suppose V is a finite dimensional vector space andT € L(V).
Then 0 is an eigenvalue of T if and only if T is not invertible.
If A € M, (F), then 0 is an eigenvalue of A if and only if A is not invertible.

The final result in this section will be useful later, but we have all of the
tools we need to prove it now.

Theorem 6.1.13 Suppose that v1,...,vy are eigenvectors of T € L(V') corre-
sponding to distinct eigenvalues A1, ..., A\g. Then the set {vy,...,vg} is linearly
independent.

Proof. We will argue by contradiction. Suppose that the set {vy,..., vy}
is linearly dependent. Since v # 0 (because eigenvectors cannot be 0), we
can apply the Linear Dependence Lemma (Theorem 5.1.19). Therefore, there
is some j > 2 such that v; € Span{vy,...,v;_1}. There may be multiple
subscripts j for which this is true; we use the smallest such j. We therefore
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have
Vi =ai1vi+---+a;-1V;_1, (62)

for scalars a; € F.
We now apply 7" to both sides of this equation and use the eigenvector assump-
tions (as well as the linearity of T') to get

T(vj) =T(a1vi + - +aj-1vj-1)
T(Vj) = alT(Vl) + -+ aj_lT(vj_l)
)\jVj = (11)\1V1 + -+ ajfl)\j,lvj,l. (63)
If we multiply both sides of (6.2) by A; and subtract the result from (6.3), we

get
0= (11()\1 — )\j)Vl + -4 ajfl()\jfl — )\j)ijl.

Since {v1,...,vj_1} is linearly independent by assumption, we must have
a;(A; —A;) = 0 for each ¢, 1 <4 < j— 1. But we assumed that the eigen-
values are all distinct, so this means that A\; — A; # 0 for all 4, and therefore
we must have a; = 0 for all <. But this implies, from (6.2), that v; = 0, which
is a contradiction as 0 cannot be an eigenvector.

This contradiction proves that {vy,..., vy} must be linearly independent. W

6.1.3 Reading Questions

1.  Consider the following matrix A € My(R) and the vectors u,v € R%:

[ el -

(a) Is u an eigenvector for A? How do you know?

(b) Is v an eigenvector for A? How do you know?

2.  Consider the matrix A from the previous reading question. Show that
—2 is an eigenvalue of A and find the corresponding eigenvectors. Follow
Example 6.1.5.

6.1.4 Exercises

1. Let A € M3(R) be the matrix

—-12 -14
A= Y

(a) Isu= [ 1 } an eigenvector for A? If so, find the eigenvalue.

(b) Isv= [_24} an eigenvector for A? If so, find the eigenvalue.

2. Let A € M3(R) be the matrix

1 -3 -1
A= 2 6 1
-4 —-10 -1

(a) Is 4 an eigenvalue for A? If so, find at least one eigenvector.

(b) Is 3 an eigenvalue for A? If so, find at least one eigenvector.
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3. Let A € M5(R) be the following matrix

-8 20 10
A= 4 -6 —4
—12 24 14
(a) Show that A = —4 is an eigenvalue for A and find a basis for

eig_,(A).
(b) Show that A = 2 is an eigenvalue for A and find a basis for eig,(A).
4. Let A € M5(R) be the following matrix

-3 1 -1
A=18 4 1
77 =2

(a) Show that A =5 is an eigenvalue for A and find a basis for eigy(A).

(b) Show that A = —2 is an eigenvalue for A and find a basis for
eig_,(A).
5. Let A € M3(Fs) be the following matrix

A=

—
= O O
_= w O

(a) Show that A =4 is an eigenvalue for A and find a basis for eig,(A).

(b) Show that A = 2 is an eigenvalue for A and find a basis for eig,(A).
6. Let A € M3(R) be the following matrix:

1 3 5
A=1|1 3 5
1 3 5

Find one eigenvalue of A without any calculation. Explain your reasoning.

7. Let T :R? — R? be the linear transformation which is orthogonal projec-
tion onto the line y = 5z. Find all eigenvalues and all eigenvectors of this
transformation.

8. Let T :R? = R3 be the linear transformation which is reflection across the
zy-plane. Find all eigenvalues and all eigenvectors of this transformation.

9. Let A € M,(R) be the matrix with the number 1 in every entry. Find all
eigenvalues and eigenvectors for A.

Writing Exercises

10. Prove that if A? is the zero matrix, then the only eigenvalue of A is 0.
11. Prove that an n x n matrix A can have at most n distinct eigenvalues.

12. If X is an eigenvalue for an invertible linear transformation 7', prove that
A~ ! is an eigenvalue for 71,

13.

(a) Let A be an n x n matrix. Prove that A is an eigenvalue for A if
and only if A is an eigenvalue for A”. (Hint: Figure out how A — \I
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and AT — \I are related.)

(b) Use part (a) to complete the proof of Theorem 6.1.10 for lower tri-
angular matrices.

14. In a matrix, a row sum refers to the sum of all of the entries in a particular
Tow.
Let A be an n X n matrix where all of the row sums are equal to
the same number k. Show that k is an eigenvalue of A. (Hint: Find an
eigenvector.)

15. Suppose that A € M, (F) and that for each j = 1,...,n, e; is an eigen-
vector of A. Prove that A is a diagonal matrix.

16.

(a) Suppose that A is an eigenvalue of T' € L(V') and that k£ € N. Prove
that \* is an eigenvalue of T* and that eig, (T') C eigyx (T*). (Here
T* means the composition of T with itself & times.)

(b) Give an example of a linear transformation 7' : V' — V with an
eigenvalue A such that eig, (T') # eig,2(T?).

17. Complete the proof of both halves of Theorem 6.1.12.

6.2 The Characteristic Equation

In the previous section we were able to check whether or not a given vector
(scalar) was an eigenvector (eigenvalue) for a matrix A. What was missing was
a process for finding the eigenvalues and eigenvectors for a matrix from scratch.
This section will outline such a process. (Once we find the eigenvalues, we can
use the method of Section 6.1 to find bases for the eigenspaces.)

6.2.1 How to Find Eigenvalues

We recall from Section 6.1 that a scalar A € F is an eigenvalue for a matrix
A € M, (F) if there is a nontrivial solution to the equation (A — A\I)x = 0.
Since this happens precisely when A — A is not invertible, by Theorem 5.4.13
we can use the determinant to find the eigenvalues for A.

Specifically, A is an eigenvalue for A if and only if det(A — AI) = 0. If we
consider \ as a variable, we can begin the process of finding the eigenvalues
for square matrices. We will illustrate this method in the following example
before making all of the steps explicit (with the appropriate notation and
terminology).

Example 6.2.1 Let A € M(R) be the following matrix:
2 =2
T

A scalar ) is an eigenvalue for A if and only if det(A — AI) = 0. Since A — AI
is 2 X 2, we can find the determinant with ease:

=(2-AN)(T—=)\) +4.

det(A — AT) = ‘2” —2 ’

2 7T—A
With some algebra, we can see that

det(A—AI) =X =9\ +18 = (A — 6)(\ — 3).
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Since A is an eigenvalue when det(A — AI) = 0, we see that the eigenvalues of
Aare A =6 and A = 3.

Let’s verify this method by showing that A = 6 and A\ = 3 are eigenvalues
for A and finding bases for their eigenspaces. First, if A = 6, then

_[-4 -2 14
a-or= | P~ g

From this we see that eigg(A) is one-dimensional with basis { [21} }

Now, when A = 3, we have
-1 -2 1 2
A_3I:[2 4]”[0 0]
Thus eig;(A) is also one-dimensional with basis { {_12} } O

We now give some names and notation to the elements of this method to
find the eigenvalues of a matrix.

Definition 6.2.2 If A € M, (F), then det(A — AI) = 0 is called the charac-
teristic equation of A. O
Based on our previous discussion, we can say that A is an eigenvalue of A
if and only if \ satisfies the characteristic equation of A.
It is occasionally useful to have a term and notation for just one piece of
the characteristic equation.

Definition 6.2.3 For a matrix A € M, (F), det(A — AI) is a degree n poly-
nomial referred to as the characteristic polynomial of A. Sometimes the
notation p(A) is used for this polynomial. O

We will see that the characteristic equation can get quite difficult to solve
as the size of the matrix increases. The next example provides a glimpse of
this for a 3 x 3 matrix.

Example 6.2.4 Let A € M3(R) be the following matrix:

1 -3 -1
A= 2 6 1
-4 -10 -1

To find the characteristic polynomial of A, we will use cofactor expansion along
the first row of A — AI:

det(A—)J):(l—A)’G/\ 1 2 1 2 6>\’

-10 -1-2X —4 1/\‘_1’4 -10
=(1-=NA=5A+4)+3(2-2)) — (4—4))
= —A? 4+ 6A% — 111 + 6.

[+

For the matrix A given above, we have ps(\) = —A3 4+ 6A? — 11\ + 6. O

Since one can solve a quadratic equation easily—either by factoring or using
the quadratic formula—some mistakenly think that all polynomial equations
are easy to solve. Not so. As we consider the characteristic polynomial for
the matrix in the previous example, we find the task of finding the eigenvalues
quite challenging.

While there is a formula for solving a cubic polynomial, it is not nearly as
nice as the quadratic formula. It is, in fact, something that should rarely see
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the light of day. It is ugly.

In practice, the eigenvalues of an n X n matrix are usually found with a
computer algebra system when n > 3. However, there is one way that we
could describe an eigenvalue problem and still have a reasonable expectation
that the reader could find a solution.

Example 6.2.5 Consider the following matrix A € M3(R) (from the previous
example):

1 -3 -1
A= 2 6 1
-4 -10 -1

If we know that A = 1 is an eigenvalue for A, we can find all of the eigenvalues.

Our previous work showed that pa(A) = —A3 4+ 6A%2 — 11\ + 6. If we
know that A = 1 is an eigenvalue, that means that (A — 1) must be a factor
of this polynomial. Using long division of polynomials, we can complete the
factorization:

paA) =A==\ +51-6)=—-(A—1)(A—2)(A—3).

This shows that the eigenvalues for A are A = 1,2, 3. ]

When a characteristic polynomial is factored to reveal the eigenvalues, we
might see some of those eigenvalues repeated. We now introduce a term to
describe this repetition.

Definition 6.2.6 The multiplicity of an eigenvalue is the number of times
it appears as a root of the characteristic polynomial for a matrix. Sometimes
this is referred to as the algebraic multiplicity of an eigenvalue. O

Example 6.2.7 We consider the matrix from Example 6.1.9 in the previous
section:
4.5 —-2.5 =25
A=125 —-05 =25
5 -5 -3

The characteristic polynomial for this matrix is
pa(\) = =N+ A28 —12=—(A —2)%(\ + 3).

From this we see that A has an eigenvalue of 2 with multiplicity 2 and an
eigenvalue of —3 with multiplicity 1. O
Before we move to the second half of this section, we point out that not
every matrix over F has eigenvalues in F. The following example illustrates
this, but we can understand this intuitively by recognizing that (for example)
not every polynomial over R can be completely factored into linear terms.

Example 6.2.8 Let A € M2(R) be the following matrix:

-5 —4
A= [ oo 6} |
We can calculate the characteristic polynomial for A:
—5—-A -4
det(A—AI)—‘ 5 6)\‘
=(=5—-X)(-6—-X)+20
=A% + 11X + 50.

This quadratic polynomial has no real roots, as the reader can check by verify-
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ing that the discriminant (the expression under the square root in the quadratic
formula) is negative.

If A is considered as a matrix over C, then it has two complex eigenvalues.
But it has no real eigenvalues. (]

One of the major differences between R and C is that C is an algebraically
closed field, while R is not. The fact that C is algebraically closed is another
way to restate the famous Fundamental Theorem of Algebra, which says that
every polynomial with coefficients in C can be completely reduced to linear
factors. There are interesting, deep waters to explore here, but perhaps not in
the present text.

6.2.2 Similarity

Earlier in this book we discussed one way matrices can be related—row equiv-
alence. We now introduce another relationship which has connections to the
characteristic equation.

Definition 6.2.9 Suppose that A, B € M,,(F). Then A is similar to B if there
exists an invertible matrix P € M, (F) such that P~'AP = B or A = PBP~L.
O

Note 6.2.10 Since we could write @ = P~! in the previous definition and
have Q7'BQ = A when P~1AP = B, we see that B is similar to A when A is
similar to B. For this reason, we can say that A and B are similar.

The next theorem presents one of the most compelling reasons for studying
similarity in matrices.

Theorem 6.2.11 If matrices A, B € M, (F) are similar, then they have the
same characteristic polynomials and therefore the same eigenvalues (with the
same multiplicities).

Proof. If A and B are similar, then there exists an invertible matrix P such
that B = P~ AP. When forming B — A\, we have

B- A =P AP - AP 'P=P YAP - \P)=P '(A- )P
Since the determinant is multiplicative (Theorem 4.2.13), we have

det(B — A\I) = det(P~") det(A — XI) det(P)
= det(P~ 1) det(P) det(A — \I)
= det(P~'P)det(A — \I)

= det(]) det(A — AI)

= det(A — AI).

This shows that A and B have the same characteristic polynomials. |
The next example showcases two similar matrices.

Example 6.2.12 Let A and B be the following matrices over R:

~10 5] 1 4
A=la 3] B_[?) 2]'

We will show that these are similar matrices by considering the matrix P:

[—4 -1
P=15 )

The reader can check that P is invertible and that A = P~1BP. This shows



CHAPTER 6. EIGENVALUES AND EIGENVECTORS 153

that A and B are similar.
Further calculation shows that pg(\) = A2 — 3\ — 10 and that this is the
same as pa(A). O
It is important to note the direction of logical implication that Theorem 6.2.11
provides. If two matrices are similar, then they have the same eigenvalues.
However, we may have two matrices with the same eigenvalues which are not
similar.

Example 6.2.13 Let A, B € M(R) be the following matrices:

5 0 5 =2
Sl B
Since both A and B are triangular matrices, we can see that they have the
same eigenvalues (with the same multiplicity). However, these matrices are

not similar. In fact, we will show in the exercises that a matrix kI, for k € F,
is only similar to itself. In this example, A = 51. ]

We end this section with a small note of caution. Similarity and row equiv-
alence are not the same thing, and the distinction between these two relations
is important to keep in mind. In particular, elementary row operations usu-
ally alter the eigenvalues of a matrix, while we have seen that a similarity
transformation does not.

6.2.3 Reading Questions

1. Let A be the following matrix over R:
2 -1
a=% )
(a) Write down the characteristic equation for A. (Feel free to use t

instead of A if typing A is difficult.)

(b) Determine the two eigenvalues for A.

2.  Consider the matrix A from the previous reading question. Write down
two separate matrices which are similar to A. Explain how you obtained
these matrices. (There are many, many correct answers!)

6.2.4 Exercises

1. Let A € M3(R) be the following matrix:

-7 8
AL6J.
Find the characteristic polynomial and the eigenvalues of A.
2. Let A € M(R) be the following matrix:

7 -3
A_& 4]
Find the characteristic polynomial and the eigenvalues of A.
3. Let A € M3(F5) be the following matrix:

Aﬁ) ﬂ
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Find the characteristic polynomial and the eigenvalues of A.
Let A € My(F5) be the following matrix:

R

Find the characteristic polynomial and the eigenvalues of A.
Let A € M3(R) be the following matrix:
3 0 0
A=|5 -1 1
3 -1 1
Find the characteristic polynomial and the eigenvalues of A by hand.
Let A € M3(R) be the following matrix:

2 6 6
A=[10 -1 0
-3 -6 -7

Find the characteristic polynomial and the eigenvalues of A by hand.
Let A € M3(R) be the following matrix:

5 8 =8
A=|—-4 -—-11 16
0 -4 9

Find the characteristic polynomial of A by hand. If A = 1 is an eigenvalue
of A, find the other eigenvalues of A by hand.

Let A € M5(R) be the following matrix:

1 -4 —4
A=|-2 -1 —4
4 4 9

Find the characteristic polynomial of A by hand. If A\ = 3 is an eigenvalue
of A, find the other eigenvalues of A by hand.

Writing Exercises

9.

10.
11.

12.
13.

Let A € M, (R) have n real eigenvalues, \1,...,\,, repeated according to
their multiplicities, so that

det(A—AI) = (A1 — A) -+ (A — ).

Prove that det(A) is the product of the n eigenvalues of A.
Prove that similarity is an equivalence relation on the set M, (F).

Let I,, € M,(F) be the identity matrix and let ¥ € F be a scalar. If
A = kI, prove that the only matrix A is similar to is itself.

Prove that if A and B are similar, then det(A) = det(B).
Let A € M, (F). Prove that rank(A) = n if and only if p4(0) # 0.
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6.3 Diagonalization

An n X n matrix A often has a huge number of matrices to which it is similar.
In this section, we will focus on matrices that are similar to diagonal matrices,
and we do so because of how straightforward the action of a diagonal matrix
is.

6.3.1 Diagonalizable Matrices

If A is similar to a diagonal matrix D, then A = PDP~! for some invertible
matrix P. Such a factorization of A encodes much of the information about
the eigenvalues and eigenvectors of A, and it also allows us to raise A to integer
powers rather easily.

If D is diagonal, then powers of D are easy to compute. Consider the
following matrices D and D?:

-3 0 s 19 0
D_[O 4]’ b _[0 16]
In general, the many zeros in a diagonal matrix make the powers of that matrix
easy to calculate. For this specific D, we have, for any integer k > 1,

pe- [0 1)

Given the number of calculations that are usually involved in matrix multipli-
cation, this is a huge savings in computing time.

Now, if A is similar to a diagonal matrix D, we find related behavior.
Suppose that A = PDP~!. Then

A%? = (PDP Y (PDP~ ') = PD(P'P)DP!
= PD(I)DP~!' = PD?*P .

Since A3 can be written as AA?, we have A> = PD3P~!. This holds for any
k> 2:
Ak = ppFp~t.
Perhaps we have convinced a skeptical reader that there are some advan-

tages when A is similar to a diagonal matrix. This is worthy of a formal
definition.

Definition 6.3.1 A matrix A € M, (F) is diagonalizable if A = PDP~! for
some invertible matrix P and some diagonal matrix D. %

Given this definition, it is natural to ask exactly when a matrix is diago-
nalizable. That answer comes in the following theorem.

Theorem 6.3.2 The Diagonalization Theorem. A matriz A € M, (F) is
diagonalizable if and only if A has n linearly independent eigenvectors.

More specifically, A= PDP~, for a diagonal matriz D, if and only if the
columns of P are n linearly independent eigenvectors of A. In this case, the
diagonal entries of D are the the eigenvalues of A which correspond, respectively,
to the columns of P.

Proof. If P is an n X n matrix with columns vy,...,v,, and if D is a diagonal
matrix with diagonal entries Aq,...,A,, then we have

AP =A [Vl vn] = [Avl Avn] , (6.4)
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and also
PD = [/\1v1 s )\nvn} . (65)

(If the reader has trouble believing (6.5), thinking of matrix multiplication,
in each column of the product, as a linear combination of the columns of P
with weights coming from the corresponding column of D, may help!) If A is
diagonalizable, then A = PDP~! and AP = PD. From (6.4) and (6.5), by
equating columns in AP and PD we see that Av; = \;v; for 1 < i < n. Since
P is invertible, the columns of P must be linearly independent. Further, since
the columns of P cannot be zero vectors, this argument shows that A; is an
eigenvalue of A with eigenvector v;, for each i. This proves one direction of the
theorem.

If we are given vq,...,v, as eigenvectors of A with corresponding eigenvalues
Aly- .-y An, then we can form the matrices P and D. The argument in the
previous paragraph shows that AP = PD. (Note that we have not yet used
the linear independence of the eigenvectors!) If the eigenvectors are linearly
independent, then P is invertible, and AP = PD implies A = PDP~! making
A diagonalizable. |

Note 6.3.3 Theorem 6.3.2 says that A is diagonalizable if and only if there is a
basis of F™ consisting of eigenvectors of A. We call such a basis an eigenvector
basis of F".

6.3.2 How to Diagonalize a Matrix

Using Theorem 6.3.2, we see there are four steps to diagonalizing a matrix. We
will summarize them in the following algorithm.

Algorithm 6.3.4 If A € M, (F), we follow these steps to diagonalize A.

1. Find the eigenvalues of A. This usually involves solving the characteristic
equation for A. (If the characteristic polynomial does not factor into
linear factors, the matriz is not diagonalizable.)

2. Find n linearly independent eigenvectors for A. (This step may fail, in
which case the matrix is not diagonalizable.)

3. Construct the matriz P using the vectors from the previous step. Form
P by using the eigenvectors as its columns. The order of these vectors
does not matter.

4. Construct D from the eigenvalues. Once the matriz P is formed, the
order of these eigenvalues does matter—the eigenvalues must be placed
along the diagonal of D in the order corresponding to the columns of P.
In other words, entry d;; in D should be the eigenvalue for the wvector
which is column i in P.

After forming P and D, it is a good idea to check that the process was

successful. We may verify the equation A = PDP~!, or alternatively we may
check that AP = PD. (This avoids the need to find P~1.)

Example 6.3.5 We consider the matrix A € M3(R):

-2 2 =2
A=|—-4 4 -2
-6 3 -1

Though the reader can determine this independently, we will provide the char-
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acteristic polynomial to save time and space:
pa(d) = —(A+3)(A —2)>.

From this we see that the eigenvalues of A are A = —3 and A = 2.

We now find bases for the associated eigenspaces. Again, we will suppress
all of the calculations since the previous sections have gone through these in
some detail. We find that

2
eig_5(A) = Span< (2| p,
3
1 —1
eigy(A) = Spanq [2],] 0
0 2

Since we have three linearly independent eigenvectors, we know from Theo-
rem 6.3.2 that A is diagonalizable.
We now form the matrices P and D according to the algorithm:

2 1 -1 -3 0 0
P=1(2 2 0|, D=0 2 0

3 0 2 0 0 2
We can check that our diagonalization was successful by calculating AP and
PD:

[—2 2 —2][2 1 -1 -6 2 -2
AP=|-4 4 -2|1(2 2 0|=|-6 4 0
-6 3 —1] |3 0 2 -9 0 4
2 1 -1][-3 0 0 —6 2 -2
PD=12 2 0 0 2 0|l=(-6 4 0].
3 0 2 0 0 2 -9 0 4
(]
We now consider another example of a 3 X 3 matrix.
Example 6.3.6 We consider the matrix A € M3(R):
0 -6 -4
A=|5 —11 -6
6 9 4
The characteristic polynomial for A is pa(A) = —(A + 2)%(A + 3). So the
eigenvalues of A are A = —2 and A = —3.

When we look for eigenvectors, we find the following for A + 21:

2 6 —4 100
At20=|5 -9 —6|~[0 1 2
-6 9 6 00 0

This shows that eig_5(A) is only one-dimensional. Since we need three total
linearly independent eigenvectors to diagonalize A, and we will only get one
from eig_5(A), we needed eig_,(A) to be two-dimensional. This shows that A
is not diagonalizable. O

The difference between the last two examples shows that diagonalizability is
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subtle. There are times when we can tell if a matrix is diagonalizable without
a lot of work, but sometimes we need to get all the way to the eigenspace
calculation before having an answer. The following theorem states a situation
in which diagonalizability is easier to confirm.

Theorem 6.3.7 Let A € M, (F). If A has n distinct eigenvalues, A is diago-
nalizable.

Proof. If A has n distinct eigenvalues, let vy, ..., v, be eigenvectors which corre-
spond to those eigenvalues. Then, by Theorem 6.1.13, the set V' = {vq,...,v,}
is linearly independent. Since our vectors are in F™, by Theorem 6.3.2 this basis
of eigenvectors of A means that A is diagonalizable. |

Example 6.3.8 We consider the following matrix A € M3(R):

1 0 O
A=|-4 -2 0
3 -1 5

Since A is lower triangular, we can read the eigenvalues off of the main diagonal:
A =1,-2,5. Since there are three distinct eigenvalues for this 3 x 3 matrix,
then Theorem 6.3.7 says that A is diagonalizable. ]

Note 6.3.9 Having n distinct eigenvalues is a sufficient condition for a matrix
to be diagonalizable, but it is not necessary. In other words, a matrix can
still be diagonalizable with fewer than n distinct eigenvalues. We have already
encountered this in Example 6.3.5.

The following theorem collects some facts about the diagonalizability of a
matrix. (We omit the proof.)

Theorem 6.3.10 Let A € M, (F) have distinct eigenvalues A1, ..., \p.

1. For 1 < k < p, the dimension of eigy, (A) is less than or equal to the
(algebraic) multiplicity of \y.

2. The matrix A is diagonalizable if and only if the sum of the dimensions
of the eigenspaces equals n, and this happens if and only if (i) the char-
acteristic polynomial factors completely into linear factors, and (i) the
dimension of eig,, (A) equals the multiplicity of Ay, for each k.

3. If A is diagonalizable and By, is a basis for eigy, (A), then B = B1U---UB,
s an eigenvector basis for F™.

6.3.3 Linear Transformations and Diagonalizability

In Subsection 5.5.2 we saw that, for linear transformations between finite-
dimensional vector spaces, we could view these transformations as multipli-
cation by a matrix if we were content to handle coordinate vectors. And while
we didn’t have the current terminology at that point, in Section 5.6 we were cal-
culating coordinate matrices for linear transformations using similarity. (See
Example 5.6.10.)

This means that our discussion of similar matrices has implications for lin-
ear transformations broadly. And these implication are, unsurprisingly, related
to eigenvalues and eigenvectors.

Definition 6.3.11 Let V' be a finite-dimensional vector space and let T' € L(V').
Then T is diagonalizable if there exists a basis B of V such that [Tz is
diagonal. O
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Based on our discussion thus far in this section, the reader may guess that
the vectors in the basis B referenced in Definition 6.3.11 are eigenvectors for 7.
What is true for matrices is (generally) true in the proper context for linear
transformations.

Proposition 6.3.12 A linear transformation T € L(V) is diagonalizable if
and only if there exists a basis B of V' consisting entirely of eigenvectors of T.

Example 6.3.13 In Example 5.6.10, we considered the linear transformation
on R? which is reflection across the line y = %x In that example, we looked
at the basis B = {vy,va} for R? where

[l -3l

We saw that the matrix [T]z was diagonal, and now we know that was because
the basis vectors are eigenvectors for T'. Since vy lies on the line of reflection,
it is an eigenvector for T' with eigenvalue 1, and since vy lies on the line per-
pendicular to the line of reflection, it is an eigenvector for T" with eigenvalue

—1. The matrix [T]g is
1 0
O

The following result is basically a restatement of Corollary 5.6.9, using the
language of similar matrices.

Proposition 6.3.14 Suppose that V is a finite-dimensional vector space and
that T € L(V). Suppose further that B and C are bases for V. Then the
coordinate matrices [T|g and [T)c are similar.

Proof. Since change-of-basis matrices are invertible, this really is just a restate-
ment of Corollary 5.6.9. ]

The final result in this section brings several prior results together, tying
the diagonalizability of linear transformations and matrices to each other in a
predictable way.

Theorem 6.3.15 Let V be a finite-dimensional vector space, let B be a basis
for V., and let T € L(V). Then [T|g is a diagonalizable matriz if and only if
T is a diagonalizable linear transformation.
This theorem says that a linear transformation 7" is diagonalizable if there is
a basis of V with respect to which the coordinate matrix of 7" is diagonalizable.
We finish this section with an example which is perhaps a bit contrived but
which is also, hopefully, illustrative.

Example 6.3.16 Let T : P, — P; be the following linear transformation:
T(a+ bt) = (a — 4b) + (3a — 6b)t.
If B is the standard basis for P;, then [T]g is

[T]s = [:15 :g] :

It is fairly easy to determine that [T is diagonalizable, since the characteristic
polynomial is
A4+ 5X+6=(A+2)(\+3).

Since [Tg is diagonalizable, that means that T is a diagonalizable linear trans-
formation.
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Using coordinate vectors, we can also determine the basis C of P; with re-
spect to which T has a diagonal coordinate matrix. (It is a basis of eigenvectors
of T)

Since the eigenvalues of [T]p are A = —2,—3, we can find bases for the
related eigenspaces. For ease of notation, let [T]z = A. Now

cig_o(A) = Span{ [;j } . eig_;(A) = Span { H } .

These are the coordinate vectors for the eigenvectors of T' with respect to the
standard basis. Therefore, an eigenvector basis of P; is

C={4+3t1+1t},

and [T]¢ is a diagonal matrix with diagonal entries —2 and —3. O

6.3.4 Reading Questions

1. Cousider the following matrix A € M (R):
-1 2
A= [ ; 4} .
(a) Find the characteristic polynomial and the eigenvalues of A. Show

your work.

(b) Using only part a (this means you should make no additional calcu-
lations), explain why A is diagonalizable.

2. Let A be the same matrix as in the first reading question. Following
Algorithm 6.3.4, diagonalize A.

6.3.5 Exercises

1. Let P,D € My(R) be the following matrices:

2 5 -2 0
] o2 )
If A= PDP~!, calculate A%.
2. Consider the following matrix A € M3(R):

-5 -3
A= [ 6 4 } ‘
Determine whether or not A is diagonalizable. If it is, diagonalize it. If it

isn’t, explain why it isn’t.
3. Consider the following matrix A € Ms(R):

3 1
A= [1 5} .
Determine whether or not A is diagonalizable. If it is, diagonalize it. If it
isn’t, explain why it isn’t.
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4. Consider the following matrix A € M3(R):

14 3 12
A=1|-2 3 =2
-7 -1 =5

Determine whether or not A is diagonalizable. If it is, diagonalize it. If it
isn’t, explain why it isn’t. (Hint: One of the eigenvalues of A is A =5.)

5. Consider the following matrix A € M3(R):

-9 -8 -16
A=|-4 -5 =8
4 4 7

Determine whether or not A is diagonalizable. If it is, diagonalize it. If it
isn’t, explain why it isn’t. (Hint: One of the eigenvalues of A is A = —1.)

6. Suppose that A € M4(R) has three distinct eigenvalues. One eigenspace
is one-dimensional and one of the other eigenspaces is two-dimensional. Is
it possible for A not to be diagonalizable? Explain.

7.  Consider the following matrix A € M>(R):
4 -1
a=[4 7

Show that a diagonalization A = PDP~! is not unique by finding two
pairs of matrices (P, D) which diagonalize A.

Writing Exercises

8. Prove that if A is both invertible and diagonalizable, then so is A~!.

9. Let A € M,(F). Prove that if A has n linearly independent eigenvectors,
then so does AT

10. This problem explores the relationship between invertibility and diagonal-
izability.
(a) Construct a nonzero 2 X 2 matrix which is invertible but not diago-

nalizable.

(b) Counstruct a nondiagonal 2 x 2 matrix that is diagonalizable but not
invertible.

11. Let T : R?® — R3 be projection onto the zy-plane. Prove that T is
diagonalizable.

12. Let T : R?2 — R? be orthogonal projection onto the line y = —6z. Prove
that T is diagonalizable.

13. Let T :R? — R2 be counterclockwise rotation by 5 radians.
(a) Prove that T is not diagonalizable.

(b) Prove that T? is diagonalizable.
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6.4 Invariants

One of the fun aspects of linear algebra is that it touches so many different areas
of mathematics. In this section we will connect row equivalence and similarity
to the topic of mathematical invariants, which is used in many mathematical
disciplines to determine whether or not two objects are related.

6.4.1 Introduction to Invariants

Many areas of mathematics have a notion of the relatedness of the important
objects of study. In linear algebra, we have already learned about vector spaces
being isomorphic (Theorem 5.3.12), and this idea shows up widely. We often
prove that mathematical objects are related by defining a function between
them and showing that it has all the right properties.

However, showing that two mathematical objects are not related is harder
when working strictly from the definitions. It is difficult to show that a function
with certain properties cannot exist—mnot being able to find or think of such
a function is not a sufficient argument! This is where invariants enter the
picture.

Definition 6.4.1 An invariant of a mathematical object is a property of
that object that is either the same for all members of an equivalence class or
unchanged after some sort of transformation. O

Note 6.4.2 In our present context, we will be thinking about equivalence
relations. This is a good opportunity to think through the logic of invariants.
Suppose we have two objects A and B which are related by some equivalence
relation. We will write A ~ B. (This tells us that A and B are in the same
equivalence class.) If there is an invariant f in view, then A ~ B implies the
values of the invariant are equal—in other words, A ~ B implies f(A4) = f(B).

The contrapositive of this implication is what we end up using with great
frequency. If f(A) # f(B), then we know that A % B. (In other words, A and
B are not related.) Importantly, knowing that f(A) = f(B) does not prove
that A and B are related. The implication goes in one direction, but not the
other.

Before this discussion gets too vague, let’s look at an example that most
readers of this book should recognize.

Example 6.4.3 We say that two geometric objects are congruent if they
have the same shape and size. Most readers will likely have spent some time
considering congruent triangles in a geometry class, where they encountered
several congruence theorems for triangles: Side-Side-Side, Side-Angle-Side, etc.
(Note that congruent triangles are not the same as similar triangles, though
there are some, ahem, similarities.)

In this example, congruence provides the relevant equivalence relation on
the set of all planar triangles.

One invariant that can be used to distinguish between triangles that are not
congruent is the area of the triangle. It is easy to show that if two triangles are
congruent, they have the same area. Therefore, if two triangles have different
areas, we can conclude that they are not congruent.

To be specific, suppose that triangle A is a 30-60-90 triangle with side
lengths (10, 10V/3, 20) and triangle B is a 45-45-90 triangle with side lengths
(10v/3,10v/3,10v/2v/3). Then since the area of a right triangle is easy to
calculate using the %bh formula, we can see that both triangles A and B have
an area of 50v/3 square units. But these triangles are not congruent—they
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have different angles, after all.

In summary, the area of a triangle can be used to distinguish between
triangles that are not congruent. However, area cannot be used to conclude
that two triangles are congruent. In this way, area is a typical invariant. 0O

In this text, we have discussed two equivalence relations on sets of ma-
trices for which there exist some interesting invariants. For fixed values of
m and n, row equivalence is an equivalence relation on the set M, ,,(IF). (See
Exercise 1.2.10.) More recently, we have looked at similarity, which is an equiv-
alence relation on the set M, (IF) for fixed values of n. (See Exercise 6.2.4.10.)

We have shown in Theorem 6.2.11 that the characteristic polynomial is an
invariant for similar matrices. If two matrices are similar, they have the same
characteristic polynomial, and therefore the same eigenvalues (with the same
multiplicities). This means that if we know of two matrices of the same size
with different eigenvalues, they cannot be similar.

Additionally—and using much the same argument—the determinant is an
invariant for similar matrices. (We asked the reader to prove this in Exer-
cise 6.2.4.12.) So, two matrices of the same size with different determinants
cannot be similar.

We will summarize these two already-established facts in the following
proposition.

Proposition 6.4.4 Let n be a positive integer and let F be a field. The
determinant and the characteristic polynomial are both invariants on the set
M, (F).

While the characteristic polynomial and the determinant are useful invari-
ants for similarity, they are far from the only ones. In the second half of this
section we will develop two more invariants which respect similarity, one of
which is quite surprising.

6.4.2 Rank and Trace as Invariants

We will first state and prove a few results needed to establish rank as an
invariant.

Theorem 6.4.5 Suppose that V and W are finite-dimensional vector spaces
and that T € L(V,W). Then, for any bases B of V and C of W, we have

rank(T) = rank([T]gc) and dim(ker(7T)) = dim(null([T]5.c)).

Proof. Suppose that B = {vy,...,v,} and let A= [T]g¢. Since V = Span(B),
we have range(T") = Span{T'(v1),...,T(vy)}. By Theorem 5.5.3 we know that
Span{T'(v1),...,T(v,)} is isomorphic to

Span{[T(v1)le, ..., [T(va)]c).

The vectors [T'(v;)]¢ are exactly the columns of A, so
rank(7T") = dim(range(T")) = dim(col(A)) = rank(A).

For the second equality, we refer to The Rank-Nullity Theorem. If dim(V) =
n and dim(W) = m, then A is m x n. We have proved that rank(T) =

rank(A), and comparing the two equations in Theorem 5.4.10, we are left with
dim(null(A)) = dim(ker(7')), as desired. |

Proposition 6.4.6 Suppose that V is an n-dimensional vector space over F,
that B is a basis of V, and that T € L(V'). Suppose further that A and B are
stmilar matrices in M, (F) and that A = [T|g. Then there exists a basis C of
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V' such that B = [T]c.

Proof. Let B = {v1,...v,} and suppose that B = SAS~!. We define Q = S~*
and, for each j, we define w; by

n

W = E Qi Vi,

i=1

so that g, is the coordinate vector [w;]g. Since @ is invertible, then {q1,...,q,}
is a basis of F™, so C = {wy,...,w,} is a basis of V. (This is again due to the
coordinate mapping being an isomorphism.) We also have

FPegej = Peplwile = [wils = q;

for each j, so Pc g = (). Therefore, by Lemma 5.6.6, S = Pg¢, and so by
Corollary 5.6.9, [T]c = SAS™! = B. [ |

Note 6.4.7 Proposition 6.4.6, along with Proposition 6.3.14 show us that two
matrices are similar if and only if they represent the same linear transformation
with respect to different bases.

With these two results in hand, we can state the first invariant we have
been pointing toward.
Corollary 6.4.8 If A, B € M,,(F) are similar, then rank(A) = rank(B).

Proof. This follows from Theorem 6.4.5 (in the case where V=W and B = ()
as well as Proposition 6.4.6. ]
In the following example, we put this invariant to work.

Example 6.4.9 Let A, B € M3(R) be the following matrices:

35 5 —45 2 3 4
A=|35 -3 -15|, B=|-2 -4 0
-3 5 -6 35 —5 -2

Some quick row reduction shows that rank(A) = 2 while rank(B) = 3, so we
know that A and B are not similar. g

We now move into the development and discussion of our final invariant,
the trace of a matrix. Of all the invariants we discuss, the trace is by far the
easiest to calculate!

Definition 6.4.10 Let A € M,,(F). The trace of A is the sum of the numbers
along the main diagonal of A. In other words,

tI‘(A) = zn: Qi .
i=1

O
Example 6.4.11 Here are two matrices over R:
2 1 0
A= [_:1)) g] B=135 -2 -3
4 =25 =25

By summing the entries along the main diagonal, we see that tr(A) = 1 and
tr(B) = —2.5. O
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We need surprisingly few additional results in order to establish the trace
as an invariant.

Proposition 6.4.12 If A € M,, ,(F) and B € M,, ,,(F), then
tr(AB) = tr(BA).
Proof. We begin by using the definitions of the trace and matrix multiplication:

m m

j=1

=1 i=1

Since multiplication and addition in a field are both commutative, we can
switch the order of summation and multiplication. The calculation is finished
using the definitions of matrix multiplication and the trace again:

tI‘(AB) = Z bjiaz-j = Z[BA}JJ = tI‘(BA)

j=11i=1 j=1

n m n

This next result finishes our argument.

Corollary 6.4.13 If A and B are similar matrices, then tr(A) = tr(B).

Proof. Suppose that B = PAP~!. By the associativity of matrix multiplica-
tion and Proposition 6.4.12, we have

tr(B) = tr(PAP™ ) = tr((PA)P™Y) = tr(P~}(PA))
= tr((P~'P)A) = tr(IA) = tr(A).

We can now use the trace as an invariant.

Example 6.4.14 Let A and B be the following matrices over Fs:
4 1 2 2
RN
Since tr(A) = 1 and tr(B) = 2, we know that A and B are not similar matrices.
|

One consequence of this invariant is that it allows us to define the trace of
a linear transformation.

Corollary 6.4.15 Let V' be a finite-dimensional vector space and let T € L(V').
If B and C are two bases for V', then tr([T]g) = tr([T]c).

Proof. This is a direct and immediate consequence of Proposition 6.3.14 and

Corollary 6.4.13. [ ]
Definition 6.4.16 Let V be a finite-dimensional vector space and let T € L(V).
Then the trace of T is tr(T") = tr([T]g), where B is any basis of V. O

Example 6.4.17 We end this section with an example of a linear transforma-
tion T': P — P; which was defined in Example 6.3.16. In that example, we

saw that
1 —4
[T]B - |:3 _6:| bl

so we can see that tr(7) = —5. O
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6.4.3 Reading Questions

1. Use only the rank invariant to answer the following questions. If that
invariant does not give you enough information to answer the question,
explain why that is.

15 3 —15 3.5 —45 —4
A=|-05 0 15|, B=|35 —05 4],
05 -3 —45 ~35 —1.5 3.5

4 -2 -6

C=|25 5 25

25 -5 —25

(a) Are A and B similar? Explain.
(b) Are B and C similar? Explain.

(¢) Are A and C similar? Explain.

2. Use only the trace invariant to answer the following questions. If that
invariant does not give you enough information to answer the question,
explain why that is. (The matrices for this question are the same as for
the previous reading question.)

a) Are A and B similar? Explain.
(a) p
(b) Are B and C similar? Explain.

(¢) Are A and C similar? Explain.

6.4.4 Exercises

1. Consider the following two matrices in M3(R):

-5 45 1.5 -3.5 35 —-35
A=|-15 0 45|, and B= |—4.5 35 -25
1 —15 1.5 -4 0.5 3

(a) Explain why both determinant and rank are not useful invariants to
say that A and B are not similar.

(b) Prove that A and B are not similar.

2. Consider the following two matrices in M3(R):

1 -6 2 10 13 =5
A= |1 2 1|, and B=|-3 -6 -1
0 6 -1 3 3 -2

(a) Explain why both trace and rank are not useful invariants to say
that A and B are not similar.

(b) Prove that A and B are not similar.
3. Consider the following two matrices in M3(R):
—-10 —-20 -2 2 -1 1

A= 7 14 1|, and B= |2 -2 2
-5 —-10 -1 2 -3 3
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(a) Explain why the trace, rank, and determinant are not useful invari-
ants to say that A and B are not similar.

(b) Prove that A and B are not similar.

4. Consider the following two matrices in M (F7):

2 4 4 4
A{S 5], and B{5 3].

(a) Explain why the trace and rank are not useful invariants to say that
A and B are not similar.

(b) Prove that A and B are not similar.

5. Consider the following two matrices in M3(F7):

A=

—
(SN I
(S V]

2
, and B= |4
5

(G2 TSN V)
e )

(a) Explain why the trace, rank, and determinant are not useful invari-
ants to say that A and B are not similar.

(b) Prove that A and B are not similar.

6. Consider the following two matrices in M3 (F7):
2 2 4 2 00
A=15 3 3|, and B=1|5 4 3
4 0 0 2 5 6

(a) Explain why the trace, rank, determinant, and characteristic poly-
nomial are not useful invariants to say that A and B are not similar.

(b) Prove that A and B are not similar.

7. There are 16 elements of the set M3(F2). How many equivalence classes
are there for this set under the similarity equivalence relation? Use as
many of the invariants as you can to distinguish between matrices that
are not similar to each other.

Writing Exercises
8. Let A € M3(F) be this 2 x 2 matrix:
a b
a=loil

(a) Write out the characteristic polynomial of A, substituting det(A)
and tr(A) where appropriate.

(b) Argue that, for 2 x 2 matrices, the fact that the characteristic poly-
nomial is an invariant (for similarity) implies that both the trace
and determinant are invariants.

9. Fix a positive integer n > 2. Is diagonalizability an invariant (for similar-
ity) on the set M, (F)? In other words, for A, B € M, (F), if A and B are
similar, must it be true that either (a) they are both diagonalizable, or
(b) they are both not diagonalizable?
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10.

11.

12.

13.
14.
15.
16.
17.

Suppose that A € M, (F).

(a) Prove that if A has n distinct eigenvalues, then tr(A) is the sum of
the eigenvalues of A.

(b) Is the result from part (a) true if A does not have n distinct eigenval-
ues? For example, if A € M3(R) has only two distinct eigenvalues,
must tr(A4) be the sum of the eigenvalues (with multiplicity)?

(a) Prove that if A, B,C € M, (F), then

tr(ABC) = tr(BCA) = tr(CAB).

(b) Give an example of three matrices A, B,C € M,(F) such that
tr(ABC) # tr(ACB).

For a matrix A € M, (F), define the function S(A) as the sum of all of the
entries of A. Prove or disprove that S is an invariant for similar matrices.
Is rank an invariant for row equivalence? Justify your answer.
Is the trace an invariant for row equivalence? Justify your answer.
Is the determinant an invariant for row equivalence? Justify your answer.
Is invertibility an invariant for row equivalence? Justify your answer.

Is invertibility an invariant for similarity? Justify your answer.



Chapter 7

Inner Products

7.1 Inner Products

A general vector space need not have any relevant geometry, and in most of
our work up to this point, geometric notions did not play a central role. In
this chapter, however, we will begin to take advantage of the geometry present
in some vector spaces.

7.1.1 The Dot Product

In Euclidean geometry, we are introduced to the dot product quite early. The
dot product in R"” is essential to our understandings of length and distance.

Definition 7.1.1 For two vectors x,y € R", we have the dot product of x
and y given by
n
X-y= Z TiYi,
i=1

where x = [z;] and y = [y;]. O

Example 7.1.2 Suppose that x and y are the following two vectors in R3:

-1 0
x=(2], y=|1
-2 -3
Then x -y = (—1)(0) +2(1) + (—2)(-3) = 8. O

Note 7.1.3 Having facility with matrix multiplication now, the observant
reader will notice that x -y = yT'x.

Definition 7.1.4 The length or norm of a vector x € R” is the nonnegative
scalar |x|| defined by

x| = vx-x=/2% + 2%+ +22.

Example 7.1.5 If x € R3 is the same as in Example 7.1.2, then

x| = /(~1)2 + 22 + (—2)2 = V9 = 3.

169
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Of special relevance for us is the fact that the dot product gives us a notion
of angles and perpendicularity.

Definition 7.1.6 Two vectors x and y in R™ are orthogonal if x-y=0. ¢

Note 7.1.7 The word “orthogonal” is another way of saying “perpendicular,”
but “orthogonal” is used much more frequently in linear algebra.

Example 7.1.8 Let u, v, and w be the following vectors in R?:

[ ol o8]

We can see that u and v are not orthogonal, since u-v = 10. However, u and
w are orthogonal, as u-w = 0. O
As this chapter continues, the reader will see just how important orthogo-
nality is. For now, we note that all of the vectors in the standard basis of R™,
e1,..., ey, are orthogonal to each other. That is, e; - ¢; = 0 whenever i # j.
A consequence of this last fact is stated in the following proposition.

Proposition 7.1.9 If v € R" is given by v = [v;], then v; = v - e; for each i,
1 <1< n.

Proof. By definition of the dot product, we have
n
vV-e; = Zvj(ei)j = vy,
j=1

since the only nonzero entry of e; is (e;); = 1. [ |

This has been a very brief review/introduction to the dot product. As we
generalize this function in what follows, we will remind the reader of important
facts and properties as we need them.

7.1.2 The Inner Product

In the same way that vectors in R™ gave us the intuition to consider a general
vector space, the dot product in R™ points us toward a more general function
on vector spaces. Our generalization of the dot product is called the inner
product.

Note 7.1.10 Before this definition we need a quick reminder. For a complex
number z = a + bi, recall that the complex conjugate of z is defined by
Z = a — bi. This will be used in the following definition.

Definition 7.1.11 Let V be a vector space over a field F, where F is either
R or C. An inner product on V is a function that associates to each pair of
vectors u and v in V' an element of the field (u, v) satisfying all of the following
axioms. For all u, v, and win V, and all ¢ € F:

L (u,v)= W?

A vector space together with an inner product is called an inner product
space. O
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Note 7.1.12 If the field we have in mind is R instead of C, then the first
property listed in the definition is just (u,v) = (v,u). (If z € R, then T = z.)
Also, if our field is C, we still require (u,u) to be a real number, as this is
implicit in the fourth property where (u,u) > 0.

Before we introduce examples, we want to comment here on why the only
fields we allow for inner product spaces are R and C. The inner product
requires that a notion of order be present in any field over which a vector
space is defined. This is inherent in the fourth property listed in the definition
of an inner product, where we must have (u,u) > 0 for all u € V. We do not
have this sort of ordering in a finite field like 5.

As we discuss in Appendix A, each field F,, is really a set of equivalence
classes of Z under the equivalence relation congruence mod p. So when we
write 2 as an element of Fy, we're referring to [2], the equivalence class of all
integers congruent to 2 mod 5. And although our convention is to use the
integers 0,1,...,p— 1 as the equivalence class representatives for the elements
of F,, this is not a requirement. So, 7 and 12 and —3 could all by used as
the representative of [2] € Fs. This means that we cannot in any coherent
way say that [2] € F5 is “greater than or equal to 0" Because of this lack of
ordering, finite fields do not have the geometric properties that we require for
an inner product space. We must bid a fond farewell to these dear friends for
now, knowing that we will cross paths with them again in our mathematical
futures.

Example 7.1.13 All real vector spaces R™ with the dot product are inner
product spaces. (Once again, we would be particularly bad at generalizing if
the motivating case were not an example of the general situation!) (|

Example 7.1.14 For vectors u,v € C", the standard inner product is defined

by
<u7 V> = Z uiviiu
i=1

where u = [u;] and v = [v;].
As an example calculation, we consider the following two vectors in C2:

1+ C[2-i
WS ol VT 34 4i)

Then we have

(u,v) = (1 +)(2 — i) + (—2i)(3 + 44)
=142+ + (—2i)(3 —41)
=—-7— 3.
We will leave for the exercises the proof that the inner product axioms hold
for this function. |

Example 7.1.15 Let C([0,1]) denote the vector space of continuous real-
valued functions on the interval [0,1]. (See Example 2.3.5 for a discussion of
vector spaces like this one.) We can study an inner product on this space
defined by the following:

(f,9) :/0 f(z)g(x) dx.

Again, we provide an example of a calculation. If f(z) = 2z and g(x) = 2 — 4,
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then

7

<f,g>=/O 22(2” — 4) da:z/0 (22% — 8z) do = —.

Proving that the inner product axioms hold requires recalling a few facts
from calculus. We leave this to the exercises. |

Example 7.1.16 We consider an inner product on P», the vector space of all
real-valued polynomials of degree at most two. For p,q € P», we define the
function

(p,q) = p(0)q(0) + p(1)q(1) + p(2)q(2).

To become familiar with this function, we can calculate the inner product of
p=t—2t? and ¢ = 3 + 4t. Calculating (p,q) only involves evaluating these
polynomials at ¢t = 0, ¢ = 1, and ¢ = 2 and then finding the sum of the products.
We find that

(p,q) = p(0)q(0) + p(1)q(1) + p(2)q(2)
= (0)(3) + (=1)(7) + (—6)(11) = —73.

The first inner product property holds since multiplication in the real num-
bers is commutative. The second and third properties hold by the definitions
of vector addition and scalar multiplication in P,. The first part of the third
property holds because the sum of squared real numbers must always be non-
negative. The final part of the third property holds by an important fact about
polynomials: any polynomial of degree n which has n 4+ 1 zeros must be the
zero polynomial. (This is why we must take three evaluation points for this
function to be an inner product in Ps.) ]

The following properties flow fairly quickly from the definition of an inner
product.

Proposition 7.1.17 Suppose that V' is an inner product space. Then the
following statements are all true.

1. For eachu,v,w €V, (u,v+w) = (u,v) + (u,w).

2. For each u,v € V and each c € F, (u,cv) =¢{(u,v).
3. For eachu €V, (0,u) = (u,0) = 0.

4. IfueV and (u,v) =0 for everyveV, then u=0.

Proof. We will prove the second property and leave the others for the exercises.
Using the first and third axioms from the definition of the inner product, we
have

(u,ev) = {ev,u) = c(v,u) =¢(v,u) =¢(u,v).

|
The presence of an inner product gives us a good way to define the length
of a vector.

Definition 7.1.18 Let V be an inner product space and let v € V. Then the

norm of v is
v = V{v,v).

If |v| = 1, then v is called a unit vector. O

In the following examples we calculate the norm of a few vectors in different
vector spaces.
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Example 7.1.19 We consider the following vector in C3:

2+ 4q
v=|—-2+4i
21

Using the standard inner product on C3, we have

v = /(4 +16) + (4 + 16) + 4 = V44.

O

Example 7.1.20 Returning to the vector space C([0, 1]) with the inner product
defined in Example 7.1.15, we can find the norm of f(z) =2+ a:

1 1 19
/(2+x)2dw:/(4+4x+x2):—.
0 0 3

This means that || = /% O

Using the definition of the norm, we can examine what happens to the
“length” of a vector when it is multiplied by a scalar:

levll = V/ev,ev) = Ve (v, v) = [l |v] -

(Note that when C is our field, |¢| for a scalar ¢ = a + bi is |¢| = Va? + b2.)
From this calculation we can see that when a vector is multiplied by a scalar,
its length is multiplied by that same scalar, in a way. (We can make the most
geometric sense of this when R is our field and when c is positive.)

Example 7.1.21 Often we will want a unit vector that points in the same
direction as a given vector. We accomplish this by dividing a vector by its
length in order to form a vector of length 1.

-1

4 } in R? with the dot product, then we

If we consider the vector v = [

have

vl = V1+16 = V17.

Therefore, a unit vector in the direction of v would be

1
S
\/ﬁ ﬁ

7.1.3 Orthogonality

In the same way that we used the dot product to define orthogonality in R",
we can now extend that definition to our more general setting.

Definition 7.1.22 Two vectors u and v in an inner product space V are or-
thogonal if (u,v) = 0. A set of vectors {vi, ..., v, } is orthogonal if (v;,v;) =0
whenever i # j. %

One of the ways that orthogonality is used is through the following result.

Proposition 7.1.23 An orthogonal set of nonzero vectors in an inner product
space V is linearly independent.
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Proof. Let V! = {vy,...,v,} be an orthogonal set of vectors in V. Suppose
that
cvi+ - +cpvy, =0

for some scalars ¢y, ...,¢, € F. We want to show that all the scalars must be
zero. Then, for each k, we have

n
0= 0 vk <Z cszvk> ZCZ vak = Ck <Vk:avk> = Ck HVk:H
i=1

Since ¢ ||[vi]|> = 0 but vi, # 0, we know that [[vi]* # 0, so ¢z = 0. This is true
for each k, 1 < k < n, so V' is linearly independent. |

The next result is sometimes referred to as the Pythagorean Theorem for
general inner product spaces. When there are only two orthogonal vectors, the
reader will recognize the reference to the Pythagorean Theorem.

Theorem 7.1.24 If {vy,...,v,} is an orthogonal set of vectors in an inner

product space V, then

[vi - vl = il - o+ vl

7.1.4 Results for Inner Product Spaces

The property of orthogonality is so powerful that we will occasionally want to
call upon it even when it is not already on the scene.

Lemma 7.1.25 Let V' be an inner product space and let u,v € V. Then u can
be written as
u=cv+w, (7.1)

where ¢ € F and w is orthogonal to v. Specifically, if v # 0, then

_ <u7‘;>’ and w— 1 — (u,‘;>
vl vl

Proof. If v.= 0, then we can take w = u and ¢ = 1, as every vector is orthogonal
to 0. So, we now suppose that v #£ 0.
If there exists ¢ € F such that u = ¢v + w with w orthogonal to v, then we
must have

(u,v) = (v +w,v) = c(v,v) + (w,v) = c|v|>.

This shows that the only possibility for ¢ is ¢ = <H]‘1' H‘? )

Once ¢ has been determined, then the choice of w is determined by (7.1)—we
must have w = u — cv. Now it is easy to check that, with these values, we
indeed have (v,w) = 0 and that (7.1) holds. [ ]

Example 7.1.26 We consider two vectors in R? to understand the relationship
in this lemma:
u= 2 V= -1
3] 2|

The lemma specifies our calculations:

_{wv) 4 _[5
= HVH2 —g, W=u-—CvV = 7 |-

5

The reader can check that (v,w) = 0 and that u = cv + w. O
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There are two famous results which involve the norm in an inner product
space. We present them without proof.

Theorem 7.1.27 The Cauchy-Schwarz Inequality. For every pair of
vectors u, v in an inner product space V , we have

[ (w,v) [ < [ull vl

with equality holding if and only if one vector is a scalar multiple of the other.

Theorem 7.1.28 The Triangle Inequality. For every pair of vectors u,v
in an inner product space V, we have

o+ v < [ull + ]
We end this section with one final example of an inner product space.

Example 7.1.29 We consider the vector space R? with a modified inner prod-
uct:
(u, v) = 2uqv1 + ugvs.

The only change from the dot product in R? is the coefficient 2 on the first
term. It is not difficult to verify that this is an inner product.

Since an inner product provides a way to measure distance and length (as
well as angles), it is instructive to consider how this inner product changes our
experience of R2. Just to take one example, if we think of the “unit circle”

as the collection of all unit vectors in R?, then using this inner product we

no longer have a circle but an ellipse. The radii of this ellipse would be %

horizontally and 1 vertically. O

7.1.5 Reading Questions

1. Consider Example 7.1.29 and the inner product on R? defined there.
2
(a) fu= {3}, calculate ||u.

(b) Describe all of the vectors in R? which are orthogonal to u using
this inner product. All of these vectors fall on a line through the
origin—what is that line?

2. Consider the following function on P;. For polynomials p and ¢, define

(p,q) by
(p,q) = p(0)q(0) — p(1)q(1).

Explain why this function is not an inner product on P;. (You must show
why one of the inner product axioms fails, and to do this you should use
an example.)

7.1.6 Exercises
1. Consider the following inner product on P». For p,q € P,
(p,q) = p(=1)g(=1) + p(0)q(0) + p(1)q(1).
(You do not need to prove that this is an inner product.)
(a) Calculate (p,q) where p =3 —t and q = 2 + 2t2.

(b) Find a nonzero vector r € P, which is orthogonal to the vector p
from part (a).
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(c) Calculate ||p| and |¢| for p, ¢ from part (a).

2. Use Proposition 7.1.23 to prove that the following set of vectors in C? is
linearly independent: {vq,va,v3}, where

1 1+2¢ 21 — 16¢
vi=|1|, vo=|-3+1¢|, v3=|—-21—1
1 2-3i 173

3. Consider the following inner product on R?:
(u,v) = ugv1 + 3ugvs.

(a) Give an example of two vectors in R? which are orthogonal with
respect to the dot product but which are not orthogonal with respect
to this inner product.

(b) Give an example of two vectors in R? which are orthogonal with
respect to this inner product but which are not orthogonal with
respect to the dot product.

4. Let A be the following matrix over R:
11
e
Define a function on R? by

(u,v) = (Au) - (Av),

where the right side of the equals sign uses the standard dot product in
R2. (This function defines an inner product, but you do not need to prove
this right now.)

(a) Let u and v be the following vectors:

)

Calculate (u,v) using this inner product.
(b) Calculate |u]| and ||v|| for the vectors u and v given in part a.

(c) Find a vector w € R? which is orthogonal to the vector u (given in
part a.) with respect to this inner product.

5. Define the following function on My (R):
(A, B) = tr(AT B).

(This function defines an inner product, but you do not need to prove this
right now.)

(a) Let A and B be the following matrices:

2 0 —4 1
A= O] w3

Calculate (A, B) using this inner product.

(b) Calculate ||A]| and || B| for the matrices A and B given in part a.
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(¢) Find a matrix C € M3(R) which is orthogonal to the matrix A
(given in part a.) with respect to this inner product.

6. Consider the following function defined on M;(R):
(A, B) = det(A) - det(B).

Show that this function is not an inner product.

7. Consider the following function defined on P;:

(p,q) = p(—1)q(—1) + p(2)q(2).

Show that this function is not an inner product.
Writing Exercises

8. Consider the following function defined on R?:
(w,v) = uyve + ugvy.

Prove or disprove: this function is an inner product.

9. Prove that the function given in Exercise 7.1.6.4 is an inner product.

10. Prove that the function given in Exercise 7.1.6.5 is an inner product.

11. Prove that the standard inner product on C™, defined in Example 7.1.14,
is an inner product.

12. Prove that the inner product defined in Example 7.1.15 is an inner prod-
uct.

13. Suppose that V is a vector space, W is an inner product space, and that
T € L(V,W) is injective. For vi,vy € V, define (vi,va), by

(vi,v2)p = (T(v1), T(v2)),

where the right-hand side is the inner product on W. Prove that this
defines an inner product on V.

14. Prove properties 1, 3, and 4 of Proposition 7.1.17.

7.2 Orthonormal Bases

While the previous section extended the dot product in R™ to the notion of an
inner product in V', in this section we focus on bases for a vector space. One
remarkably nice feature of the standard basis in R™ is that, with respect to the
dot product, it is an orthogonal set in which every vector is a unit vector. In
this section we will see that such a basis exists in every inner product space.

7.2.1 Orthonormality

Our first definition is the most important in the section, as we generalize the
important characteristics of the standard basis in R".

Definition 7.2.1 Let V be an inner product space, and let V/ = {vy,...,v,}
be a subset of V. Then V' is an orthonormal set if it is an orthogonal set and
[vi| = 1forallv; € V. If V' is a basis for V, then it is called an orthonormal
basis. O
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Example 7.2.2 The standard basis is an orthonormal basis of either R™ or
Cn. |

Example 7.2.3 The following is an orthonormal basis of either R? or C?:
1 1
1| |
V2 V2
O
Example 7.2.4 For any fixed € € R, the following is an orthonormal basis of
R? or C2:
B_ cos(f)| |—sin(0)
"1 |sin(8) || cos(6) '
|

Example 7.2.5 Because of the requirement that each vector be a unit vector,
the vectors in an orthonormal basis aren’t the prettiest to behold. Here is an
orthonormal basis of R3:

1 N2 _ V2

NG V15 V3

B = 2 1 1
- N V30 9 V6
0 _v5 1

NG NG

Example 7.2.6 Consider the following inner product on the space P;:

(p,q) = p(0)q(0) + p(1)q(1).

The set B = {t,1 — t} is an orthonormal basis for P;. We first verify that this
is an orthogonal set:

(t,1—1t)=(0)(1) + (1)(0) = 0.
We can also see that each of these are unit vectors:

tty=0"+12=1
1—t,1—t)=1>4+0*=1.

Thus, B is an orthonormal basis for P; with this inner product. O

7.2.2 Coordinates in Orthonormal Bases

Having an orthonormal basis makes some tasks easier than they would be
otherwise. In particular, when we need to find coordinates of vectors with
respect to an orthonormal basis, the path is fairly gentle to walk.

Theorem 7.2.7 Let V and W be inner product spaces, and let B = {vy,...,v,}
be an orthonormal basis for V and C = {w1,..., Wy, } be an orthonormal basis
for W. For everyv €V and every T € L(V,W), we have

(v,v1)
Vp=1| (7.2)

(V,Vp)
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and

([T)s.cljr = (T(Vi),w;) - (7.3)
Proof. For v € V| we have

n
V= E CiV;
i=1

for some ¢; € F since B is a basis of V. If we take the inner product of both
sides of this equation with vi and use both the linearity of the inner product
and the orthonormality of B, we have

n n
<V7Vk> = <Z Cz'Vszk> = Ci <Vivvk> = Ck.-
=1 =1

This means that

i
-

s
I
—

<Va vi> Vi,

which is the same as (7.2).
We proceed similarly for the second statement in the theorem. For any w € W,
we have

b
NE

<Wa wz> Ww;.
1

Since T'(v;) € W, this must also be true for each T'(v;):

.
Il

I

=1

This is the same as (7.3). ]
We can illustrate one part of this theorem with an example.

Example 7.2.8 In R? with the dot product, we consider the basis B = {vy,va}

from Example 7.2.3. Then the coordinate vector of v = [ 2

B 5} with respect to
B is

O

The previous theorem has an important consequence. The inner product

of any two vectors in an inner product space is the same as the usual inner
product of their coordinate vectors in C™.

Theorem 7.2.9 Let B = {vq,...,v,} be an orthonormal basis for an inner
product space V. Then, for any vectors u,v € V, we have

n

(u,v) = Z (u,v;) (v, v;)

i=1

and

n
2
IvI® =D 1 vva) .
i=1
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Proof. By Theorem 7.2.7, we have

n

u= Zn: (u,v;)v; and v= Z (v, V) V.

i=1 i=1

So, using the properties of the inner product and the orthonormality of B, we
have

(u,v) = <Z (u,v;) v, Z (v, vj) Vj>

n

[
NE

<u’ Vi> <Va V47‘> <Vi’ vj>

o
Il

i=1 j=1

(u,v;) (v, v;).

Il

i=1

7.2.3 The Gram-Schmidt Process

Orthonormal bases are quite useful, but they do not appear around every
corner. In this section we will describe a reliable process to produce an ortho-
normal basis of an inner product space.

Algorithm 7.2.10 The Gram-Schmidt Process. This process results in
an orthonormal basis for any finite-dimensional inner product space V.

1. Start with a basis {vi,...,v,} of V.
2. Define ey = MVL

3. For j =2,...,n, define e; recursively by

j—1
e =v; — Z (vj,er) e
k=1
and )
e = €.
G

Then {ey,...,en} is an orthonormal basis of V. Additionally, for each j =
1,...,n, Span{ey,...,e;} = Span{vy,...,v;}.

Note 7.2.11 We omit the proof that the Gram-Schmidt process does what it
claims to do, as the proof is on the long and technical side. However, it may
be helpful for the readers to have a non-technical description of the process.
Starting with the original basis, for each vector we strip away the parts of the
vector that point in the direction of previous basis vectors. (We understand
that “direction” only makes geometric sense in R™, but perhaps the reader will
allow this use of analogy.) What remains gets normalized to be a unit vector
and then added to the growing orthonormal basis.

To get a good handle on this algorithm, we now present some examples.

Example 7.2.12 Consider the vector space P, with the inner product intro-
duced in Example 7.2.6. The standard basis for P; is {1,¢}, but this is not an
orthonormal basis. We will apply the Gram-Schmidt process to this basis.
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First, we calculate that (1,1) = V2, so our first vector in the orthonormal
basis should be e; = %vl = % Then, for the second calculation we need

w050 ()

So, we have
el =t LL =t 1
’ V2 V2 2’
Our final step is to normalize 5. We find that |e}| = %, meaning that

egzﬁe;:ﬁt—g.

The reader may want to verify that {e;.ex} is indeed an orthonormal set in P
with this inner product. O

Example 7.2.13 We will carry out the Gram-Schmidt process on a basis
for R® where we will use the standard dot product in R®. Consider the set
B = {vy,va,v3}, where

1 [ -1
V], = 0 , Vo = 1 , V3 = 1
1 0 -1

It is easily checked that B is a basis for R3. Now |[vi| = v/2, so we have

r-L
V2
e = 0

1
v

We need vy - €1 = % for the next calculation:

1
e’2 = Vo — (V2 . el)el = 1
-1
Since |eb| = v/3, we have
1
V3
1
€y = %
1
VB

Finally, we will calculate ej and e3. We need these two dot product calculations

first:
2
V3 € = ——7=, V3-€y=

S

Then we have

-1 1 3
=|1|+]|0|-1|3
-1 1 -3
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_1
3
— | 2
= 1|3
1
3
Since |e5]| = %, we have
_ 1
V6
0= el = | 2
NG
%
The set {e1, ez, e3} is an orthonormal basis of R3. |

Example 7.2.14 In our final example we will consider R? with the alternative
inner product introduced in Example 7.1.29. We consider a basis {vq,va} for

R2, where
p! 3
vy = 1> Vo = ol

For the Gram-Schmidt process, we first need to calculate ||v;| = v/3. So, we
have

Then we need (vy,e1) = % for the next step of the process:

1
ey, =vy — (vo,e1) e = {_2} .

Finally, we normalize €}, in order to get e;. We find that |e}| = v/6, so

O
While the Gram-Schmidt process has obvious computational implications,
it also has some theoretical consequences.

Corollary 7.2.15 FEvery finite-dimensional inner product space V' has an or-
thonormal basis.

Proof. Since we know that every finite-dimensional vector space has a basis
(Corollary 5.2.13), we can apply the Gram-Schmidt process to that basis. This
proves that such a V' always has an orthonormal basis. |

Corollary 7.2.16 Suppose that V' = {vi,...,vi} is an orthonormal set in
a finite-dimensional inner product space V.. Then V' can be extended to an
orthonormal basis of V.

Proof. By Theorem 5.3.16, V' can be extended to a basis B = {v1,...,v,} of
V. We can apply the Gram-Schmidt process to B, producing an orthonormal
basis {e1,...,e,} of V. Since V' is an orthonormal set, the Gram-Schmidt
process will produce vectors e; such that e; = v; for j = 1,...,k, meaning
that V' is a subset of B. This justifies the claim that B is an extension of V'.

|
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7.2.4 Reading Questions

1. Define the following inner product on P;:

(p,q) = p(—2)q(—2) + p(2)q(2).

(You do not need to prove that this is an inner product.) Let p; = %t + %
and py = %t — % Prove or disprove that {p;,p2} is an orthonormal basis
of P;. Show your work.

2. Consider the set {vi,vs} of vectors in R?, where

o[ =-[3)

Using the standard dot product in R?, use the Gram-Schmidt process on
this basis to produce an orthonormal basis for R2.
7.2.5 Exercises

1. Consider the following basis for R

s={l5] 5]

(a) Use the Gram-Schmidt process to create an orthonormal basis from
B. (Use the standard dot product on R2.)

(b) Let v= [g] . Use Theorem 7.2.7 to find the coordinate vector of v

with respect to the orthonormal basis of R? you created in part (a).

2. Consider the basis B = {p1,p2} for P, where
p1:2+t, p2=1—2t.
Consider the inner product on P; defined by

(P, q) = 2p(0)q(0) + p(1)g(1).
(You do not need to prove that this is an inner product.)

(a) Use the Gram-Schmidt process to create an orthonormal basis from
B.

(b) Let p=1+¢. Use Theorem 7.2.7 to find the coordinate vector of p
with respect to the orthonormal basis of P; you created in part (a).

3. Carry out the Gram-Schmidt process on the following set of vectors in C3.
Use the standard dot product in C3:

1] [o] [i
il (1], o0
ol [i] |1

4. Consider the standard basis of the vector space P,. Carry out the Gram-
Schmidt process on this basis with respect to the following inner product
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on Ps:
(pq) = /0 p(t)q(t) dt.

5. Let A be the following matrix in M3(R):

1 0 2
A=1|-1 1 0
0 -2 1

Consider the inner product on R? defined by
(u,v) = (Au) - (Av),

where the standard dot product is in view on the right side of this equation.
Find an orthonormal basis of R? with respect to this inner product.

Writing Exercises

6.  Suppose that the matrix of T' € L(V') with respect to some basis B is upper
triangular. Show that if C is the orthonormal basis obtained by applying
the Gram-Schmidt process to B, then [T]¢ is also upper triangular.

7.3 Orthogonal Projections

An inner product provides the tool to decompose vectors into useful compo-
nents. We have already seen this in Lemma 7.1.25, but in this section we will
expand our discussion. The process of orthogonal projection opens the door to
many applications.

7.3.1 Orthogonal Complements

In an inner product space, we can collect all vectors orthogonal to any given
set of vectors. In particular, we can do this with a subspace.

Definition 7.3.1 Let U be a subspace of an inner product space V. Then the
orthogonal complement of U, denoted U+, is defined as

Ut={veV|{uv)=0foralluec U}

O
It is relatively easy to verify that UL is itself a subspace of V. We will

leave that proof as an exercise.

Proposition 7.3.2 If U is a subspace of an inner product space V', then U+
is also a subspace of V.

The easiest examples of orthogonal complements to visualize are in R? and
R3. If L is a line through the origin in R?, then L= is the line perpendicular
to L which passes through the origin. If P is a plane through the origin in R?,
then P+ is the line through the origin which is perpendicular to P.

In an inner product space, any vector can be uniquely decomposed with
reference to a subspace and its orthogonal complement.

Theorem 7.3.3 Let V' be an inner product space and let U be a finite-
dimensional subspace of V. Then every vector v € V' can be uniquely written
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in the form
v=u+w,

whereu e U and w € UL,

Proof. Since U is finite-dimensional, there is an orthonormal basis for U,
{e1,...,en}. For any v € V, we define u by

m

u= Z <V, ei> €;,

=1

and we let w = v—u. Then we have v=u+w and u € U. For each k, we have

(u,er) = (v,ex),
(w,ek> = <V, ek) — <11, ek> =0.

Since w is orthogonal to each element of the orthonormal basis of U, we have
weUt.
We now need to prove that u and w are unique. Suppose that uy,us € U and
w1, Wy € UL such that

u; +w; = ug + wa.

We consider the vector x,
X=u; — Uy =Wy —Wj.

Since U and U+ are subspaces, we have x € U and x € U+, which means that
(x,x) = 0. This means that x = 0, so that u; = uy and w; = wa. |

7.3.2 Orthogonal Projections

Once we have the sort of decomposition that Theorem 7.3.3 provides, we can
properly talk about orthogonal projections.

Definition 7.3.4 Let U be a subspace of an inner product space V. The
orthogonal projection onto U is the function proj; : V. — V given by
proj;(v) =u, where v=u+wforuc U and w € U+. O

Orthogonal projection has some important properties which we now collect
in the following theorem.

Theorem 7.3.5 Let U be a finite-dimensional subspace of an inner product
space V.

1. The function proj is a linear transformation.

2. If {e1,...,e,} is an orthonormal basis of U, then

n

projy (v) = Z (v,e;)e;

i=1
for eachveV.
3. For each v €V, v — proj;;(v) € U+.

4. For eachv,w eV,

(projy; (v), w) = (projy; (v), projy; (w)) = (v, projy(w)) .
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5. If B=1{e1,...,en} is an orthonormal basis for V, and {e1,...,e,} an
orthonormal basis of U (with n < m), then [projy|g is a diagonal matriz
with the first n diagonal entries being 1 and the remaining diagonal entries
being 0.

6. We have range(projy;) = U and proji;(u) =u for allue U.
7. We have ker(proj,;) = U~.

8. If V is finite-dimensional, then proj;. = I — proj;.

9. We have (proji;)? = proj.

Proof. We will prove property 1. Let vi,ve € V| so we can write v = uj + wy
and vy = uy + wo, for up,us € U and wy, ws € UL. Then

Vi +V2 = (111 + 112) —+ (Wl + Wg),
which tells us that

projy (vi + va) = ug + ug = projy (v1) + projy (va).
Wenowlet cc Fandve V. We write v=u+w, withue U and w e U™.
We note that cu € U and cw € U~ since U and U+ are subspaces. Then
proj(cv) = proj(cu + cw) = cu = cprojy (v).

This proves that proj;; is a linear transformation.
We will also prove property 3. Let v € V and write v=u+ w, with u € U and
w € U+. Then
v—projy(v)=v—-u=wec U™
We leave the proof of the other properties to the exercises. |
We can use part of this theorem to describe the matrix of proj;; explicitly.

Proposition 7.3.6 Let U be a subspace of R™ or C"™ with orthonormal basis

{vi,...,Vm}. Then the matriz of proj,, with respect to the standard basis & is
m
[projyle = Zvivf;
i=1

where A* denotes the conjugate transpose of a matriz.
Proof. This fact follows from part 2 of Theorem 7.3.5 and the fact that the
standard inner product in C™ can be written as
(u,v) = v'u,
where matrix multiplication is in view on the right side of the equals sign. W
Lest this endeavor become purely speculative, we now carry out an example.

Example 7.3.7 We consider the plane through the origin in R® defined by
x + 2y — 2z = 0. This is a subspace of R3, let’s call it U, and we can identify
the following basis:

2] [1
B={1|11],]o0
ol |1

We use the Gram-Schmidt process on this basis to produce this orthonormal
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basis of U: ) )
VA V30
1 _2_
V5 || V30
0 _5
V30

Using this orthonormal basis of U, we can write the matrix of proj; with
respect to the standard basis. We have

[projle = e1€] + eqel

T4 2 g 111

5 5 30 15 6

— -2 1 102 1

- 5 5 0 + 15 15 3

11 5

_0 0 0 6 3 6
T 11
6 3 6
111
3 3 3
11 5
L 6 3 6

To finish this example, we will decompose a specific vector v into the pieces
specified by Theorem 7.3.3. Let

5 _1 1 29
6 3 6 3 6
: 11 1 7
projy(v)=|=35 3 3| |6|=|"3
11 5| L2 1
6 3 6 6
Then w = v — proj;; (v), so
11
6
_|_u
W= 1773
11
6
This completes the decomposition v =u + w. O

Proposition 7.3.6 depended on having an orthonormal basis for the subspace
U. We can always find such a basis through the Gram-Schmidt process, but
there is an alternative way to produce the matrix for orthogonal projection.

Proposition 7.3.8 Let U be a subspace of R™ or C™ with basis {v1,...,vg}.
Let A be the n x k matriz with columns vq,...,vg. Then

[projyle = A(A*A)_lA*.

Proof. We note that projy;(x) is an element of U, so it can be written as a
linear combination of the columns of A. In other words, there is a vector x’
which satisfies proj;; (x) = Ax’. By part 3 of Theorem 7.3.5,

x — projy (x) =x — Ax' € U™+,
Specifically, we have

(x— AX',v;) = vi(x — Ax') =0
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for each v;. If we rewrite these £ equations in matrix form, we have
Af(x— Ax') =0

or A*Ax' = A*x. If A*A is invertible, then we can multiply both sides of this
equation by A(A*A)~1, and we get

Ax' = A(A*A)71A*x.

This completes the proof, since Ax" = proj (x).

In the last paragraph we assumed that A* A was invertible, so we now prove
that fact. We can do this by proving that the null space of A*A is trivial.
Suppose that A*Ax = 0, so we have

0= (A*Ax, x) = x*(A* Ax) = (Ax)*(4x) = | Ax|]” .

But since the columns of A are linearly independent (they are basis vectors for
U), A must have rank k. By the Rank-Nullity Theorem (Theorem 5.4.10), this
means that dim(null(4)) = 0, and since |Ax|* = 0 means Ax = 0, we must
have x = 0. This proves that A*A is invertible. ]

In the following theorem we capture two important geometric properties of
orthogonal projections.

Theorem 7.3.9 Let U be a finite-dimensional subspace of an inner product
space V.

1. For each v € V, |projy (v)|| < ||v|, with equality if and only if ve U.

2. For each v €V and each u € U, we have
v = projy (V)| < [lv —ul|,
with equality if and only if u = projy (v).

Proof. Since v — proj;;(v) € UL by part 3 of Theorem 7.3.5, v — proj(v) is
orthogonal to proj;, (v), so, using Theorem 7.1.24 we have

IVI* = Iprojy (v) + (v — projy:(v))|*

. 2 .

= [[proju (V)" + v = projy(v)
. 2

2 [[projy (V)

2
[

Equality holds here if and only if ||[v — projU(v)H2 = 0, which is true if and only
if v = projy (v). This only happens if v e U.

We now move on to the second part of the theorem. We know that
v — proj;(v) € UL and that proj;;(v) —u € U, so

v —u* = [|(v = projy (v)) + (projy(v) — w)|*

. 2 . 2
= [I(v = projy (V)" + [ (proji; (v) — w|
: 2
2> |[(v = projy (v))]” .
We have equality here if and only if || (proj;(v) —u)|* = 0, which happens if
and only if proj; (v) = u; that is, if and only if v € U. |

Note 7.3.10 This theorem says that, first, orthogonal projections result in a
shorter vector. That is, orthogonal projection is a type of contraction. Secondly,
proj; (v) is the closest vector in U to the vector v.
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Finding the closest vector to v in a subspace U can be thought of as giving
the best approximation of v by elements of U. This leads to our application of
least squares approximation.

7.3.3 Least Squares Approximation

We consider a set of points {(z;,;)} in R?; in practice, these are usually
the result of data collection, perhaps a sample of two numeric variables from a
population. A graph of such points is called a scatterplot, and we often want to
find the “line of best fit” for these data. There are many ways to measure “best
fit,” and our method here will be the least squares linear regression technique.

Define a subspace U of R"™ in the following way, where the x; in the defini-
tion are the z-coordinates of the data:

U= {[mxz; +b] €R" | m,beR}.
If we let 1 denote the n x 1 vector where each entry is 1, then
U= {mx+bl|m,beR},

where x is the vector of all of the first coordinates in our data set.

The points (z;,y;) all lie on a single line y = ma +b if and only if the vector
y of second coordinates of our data lies in U. This does not happen often, as U
is only a two-dimensional subspace of R™. So, we want to find the closest point
in U to y—by Theorem 7.3.9, we can find this through orthogonal projection.
When we find proj;; (y), the m and b will give us our equation of the regression
line.

This is called a “least squares” regression, because minimizing the distance
from y to U involves minimizing a distance. This distance in R™, when using
the dot product, looks like a sum of squares.

Example 7.3.11 Consider the following set of five points in R?:
{(2,1),(1,0),(4,4),(4,5),(3,2)}.

Our subspace U C R® is spanned by x and 1, where x is the vector of first
coordinates

54
I
SO = R

3

We form the 5 x 2 matrix A with columns x and 1. Then, by Proposition 7.3.8,
we have
[projiley = A(A*A)~' A%y,
where y is the 5 x 1 vector of the y-coordinates of our data.
We calculate the following:

5 7
« 4 |46 14 e -1 | 3@ "7
AA—{14 5}, (A*A) —[_7 23]
v 17
Now, we don’t actually want proj; (y), because that is a vector in R5. We
want to know the coefficients m and b in the linear combination of the column

vectors of A which produce projy; (y). In other words, we want the vector

26
w=(A*A)"1A*y = [ 7 ] .
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26 32

Since projy;(y) = Aw, this means that m = 2 and b = —3=. We can see that

this is a believable solution by looking at the graph below which contains the
26 32

five points as well as the line y = o — 7.

Figure 7.3.12

7.3.4 Reading Questions
1. Let L be the line y = £z in R?. (This is a subspace of R?.)

(a) Calculate an orthonormal basis for L. (We are considering R? with
the usual dot product.)

2
(b) Let v= [3
2.  Consider the same situation as in the first reading question. Using Propo-
sition 7.3.6, find the matrix of proj; with respect to the standard basis £

of R2.

} . Using part 2 of Theorem 7.3.5, calculate proj; (v).

7.3.5 Exercises

1. Let L be the line y = %:1: in R?. Write the vector v = _1] as the sum of

4
a vector in L and a vector in L*. (Use the standard dot product as the
inner product in R2.)

2. Let U = Span{vy, va}, where

(a) Find the matrix [proj;le. (Use the standard dot product as the
inner product in R3.)

(b) Using your work from part (a), find the vector in U which is closest
to v, if
-2
v=1]0
5

3. Consider the following inner product on Ps:

(p,q) = p(=1)q(=1) + p(0)g(0) + p(1)q(1).
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Let U = Span{t —t2,1+ 2t}. If p = 2 — t + 2t?, write p as the sum of a
vector in U and a vector in U-~.
4. Consider the following four points in R:

(-1,-1),(1,2),(2,0.5),(-0.75,1).
Find the least-squares regression line for these points.
Writing Exercises
5. Let U be a subspace of an inner product space V. Prove that U™t is a

subspace of V.
6. Let A€ M, ,(R). Prove that (row(A))* = null(A).



Appendix A

The Integers Modulo n

In this short appendix we will define modular arithmetic. There are other
books and sources that develop these ideas in a more thorough, formal manner.
However, we are primarily aiming for a streamlined approach that will serve
our discussion of finite fields in Section 2.1.

The Division Algorithm is essential to what follows.

Theorem A.0.1 The Division Algorithm. Let a be an integer and let b
be a positive integer. Then there exist unique integers q and r for which

a=qb+r,

and 0 <r <b.
In this statement of the Division Algorithm, the reader should think of
dividing a by b, where ¢ is the quotient and r is the remainder. For example,

17 =5(3) +2

captures the information that dividing 17 by 3 leaves a remainder of 2. Simi-
larly, the equation
-10=-2(7) +4

tells us that dividing —10 by 7 gives a remainder of 4. It is crucial for uniqueness
in the Division Algorithm that we insist the remainder r is in the specified
range. (In other words, it is not appropriate to write —10 = —1(7) + (—3) as
an application of the Division Algorithm to a = —10 and b =17.)

The Division Algorithm provides a necessary link between the definition of
congruence and what follows.

Definition A.0.2 Let a and b be integers and let n be a natural number. Then
we say that a and b are congruent modulo n if n | (a — b). We write this as
a=b (mod n). O

Proposition A.0.3 Let a and b be integers and let n be a matural number.
Then a = b (mod n) if and only if a and b have the same remainder when
divided by n.

We now define a relation on Z. Let n be a natural number. If a and b
are integers, then we say that a is related to b when a = b (mod n). (Proposi-
tion A.0.3 gives us an intuitive way to understand this relation—two integers
are related if they have the same remainder when divided by n.) It is a good
(and not terribly difficult) exercise to show that this is an equivalence relation
on Z. For an integer m, we will use the notation [m] to denote the equivalence
class of m under this relation.

192
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Definition A.0.4 Let n € N. Then the equivalence classes of the congruence
mod n equivalence relation are [0],[1],...,[n — 1]. The integers modulo n is

the set
Z, =A{[0},[1],...,[n—1]}.

Addition and multiplication can be defined on this set in the following way.
For any [a], [b] € Z,,

O

It takes a little bit of work (but not too much!) to show that these opera-
tions are well-defined.

When performing calculations in Z,,, we will prefer to use one of the num-
bers 0,1,...,n—1 as the equivalence class representative. For example, though
it is correct to write [5] 4 [6] = [11] in Z7, we will prefer to write [5] + [6] = [4].
(Note that knowing the integer n is essential in these calculations!)

Example A.0.5 Let’s carry out some basic arithmetic within Zs.

L. 3]+ [5] = [0]
2. 16) + 4] = 2]
3. 2] 7] = [6]
4. 1315 = 7

5. [3](14] + [5]) = 3]

|

At this point the reader may see that, for each n, Z,, is its own mathematical
universe, just like Z or R, with its own calculations and quirks. In particular,
it is illuminating to think about what properties of addition and multiplication
Z,, shares with R. (Also: In which cases does the value of n affect whether or
not these properties hold?)

While the full impact of those questions is best pursued in an abstract
algebra class, one question has immediate relevance for our current subject:
For which n € N do all nonzero elements in Z,, have multiplicative inverses?

In Example A.0.5 we carried out calculations in Zg, so let’s examine that set
again. Importantly, the element [1] is the multiplicative identity in Zs, meaning
that multiplying each [m] € Zg by [1] leaves [m] unchanged. By multiplying
every element in Zg by [2], we can see that [1] is never the result. This shows
that [2] has no multiplicative inverse in Zg. Further, it is illuminating to note
that the elements [1], [3], [5], and [7] have multiplicative inverses in Zg while
the elements [2], [4], and [6] do not. However, the issue is deeper than the
parity of the elements of the equivalence class; the key ingredient is relative
primeness with n.

We hope this discussion makes the following theorem believable.

Theorem A.0.6 The set Z,, has the property that all nonzero elements have
a multiplicative inverse if and only if n is prime.

In the context of Section 2.1, Theorem A.0.6 leads to the result that Z,
is a field if and only if n is prime. In this case, we will use the notation I,
in place of Z,. We will also often drop the square-bracket notation and, for
example, refer to 2 instead of [2] as an element of F3.



Appendix B

Hints, Answers, and Solutions

to Exercises

1 - Solving Systems of Linear Equations
1.1 - Systems of Linear Equations

Exercises
1.1.2. Answer. The linear system to solve is

a—b+c=6
a+b+c=0
9a+3b+c=—-2.
1.1.5. Answer.
(a) No.
(b) No.
(¢) No.
1.1.6. Answer.
(a) The solution set is {(8/9,—11/9)}.
(

b) The solution set is empty.

(
(

)
)

¢) The solution set is empty.

d) The solution set is {(z,y) |y = 3z + 1}.
)

(e) The solution set is {(5/13,15/13)}.
Writing Exercises

1.1.7. Answer.

(a) This system has no solution because the lines are parallel:

—2x+y=0
—2z4+y=1.

194
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(b) This system has one solution because the lines only intersect at the origin:

—2z+y=0
20 +y = 0.

(¢) This system has infinitely many solutions because the equations describe
the same line:
—2z4+y=0
20 —y =0.

1.1.8. Answer. This is true if and only if the system is a homogeneous linear
system.

1.2 - Matrices

Exercises
1.2.4. Answer.

Neither

b

(a
(b) REF

)
)
(¢) REF
(d) Both
1.2.5. Answer. Two possibilities (there are many!):

B= [‘02 1;’2], and C = Ll) _1?;/22]
1.2.6. Answer.

1 0 31/10
(b) 0 1 —3/10}

[1 0 21/23
(d) [0 1 —5/23
00 0

1.2.7. Answer.

(a) There are 4 possible RREFs.
(b) There are 7 possible RREFs.
(¢) There are 4 possible RREFs.

1.3 - Results

Exercises
1.3.1. Answer.

(a) The only solution is (—4,5,0).
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(b) The solutions can be written parametrically as

r1 = QSUQ +2
o is free
T3 = —3.

(c) There are no solutions.

(d) The solutions can be written parametrically as

T, = —2x3+4x4 +7
To = —9x3+ 14 — 4
3 is free
x4 is free
x5 = 4.
1.3.5. Answer. This system is consistent if and only if 3b; + 2b5 + b3 = 0.

1.3.8. Answer. The function is f(z) = 32% — 3z + 2.

1.3.9. Answer. The values are a = %, b=0,c= f%, and d = 3.

Writing Exercises

1.3.10. Hint. It is easy to find at least one solution to every homogeneous
system. Why?

1.3.14. Answer. Yes, this system is consistent. (Why?)

1.4 - Vectors,
1.4.4 - Exercises
1.4.4.1. Answer. Here is the linear system:

20 =17
z—3y=-1
—2z4+y=-1

1.4.4.2. Answer. Here is the vector equation:

2 0 ) 9
z|1l|+y |3 |+2z|1|=|-1
0 -1 -7 0

1.4.4.3. Answer. There are an infinite number of correct answers! Three
vectors that are in the span are u = lu+ Ov, v = Ou + 1v, and 0 = Ou + Ov.
Here are two additional vectors in the span:

[\
D

-1 2 -1 4
1.4.4.4. Answer. Ifx = [ 1 }, u= [3], v = [0 ], and w = [1], then x

can be written as
X = au+ bv + cw,

¢, b= % + 13—007 and ¢ can be any real number.
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1.4.4.7. Answer. The vector b is in Span{u,v} as long as the following
equation is satisfied:
by + 2by — by =0.

Writing Exercises

1.4.4.9. Hint. One might try to prove that u = {Z] and v = [Z} are
collinear if and only if ad — bc = 0. Then an exercise from section 1.3 can be
invoked.

1.4.4.12. Solution. We must prove that for all real numbers ¢ and all u and
v in R™ we have

c(u+v) =cu+ecv.

Let u and v be denoted in the following way:

a1 U1
u= | : and v =
Up, Un,
Then we have
w1 + U1 c(uy + v1)
c(lut+v)=c : = :
Uy, + Up c(up + vp)

Now, since the distributive law holds for real numbers, we have c¢(u; + v;) =

cu; + cv; for all ¢ = 1,...,n. This means that
cuy + cvy | cuy cvy
clutv) = : = |+
ClUp, + CUp, | Clp, CUp,
U7 _Ul
=c +c|: | =cu+tecv.
Up | Vn

This completes the proof.

2 - Fields and Vector Spaces
2.1 - Fields

Exercises
Writing Exercises

2.1.6. Answer.

(a) No, Z[z] is not a field. All of the integers are contained in Z[x], and since
(for example) 2 € Z has no multiplicative inverse in Z, it will not have a
multiplicative inverse in Z[x].

(b) No, R[z] is not a field. The element = € R[z] has no multiplicative inverse.
We can argue this by contradiction. If b = ag + a12 + asx? + - - - was the
multiplicative inverse of x, then

1=2ab=apr+az® +agx®+ - --.
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But since the constant term on the right side of this equation is 0 and
the constant term on the left side is 1, and since those are not equal, we
have a contradiction.

2.1.8. Answer.

()

(b) Yes, this is a field. The most difficult axiom to check is the one about
multiplicative inverses. It turns out that the multiplicative inverse of
a + ba is ¢ + da where
1 b
= —5——, and d= ————.
T M a? — 2b2
One needs to check that for all non-zero elements a+ ba: of Fs[a] we have
a? — 2b% # 0. But this is relatively easy to verify.

2.1.10. Answer. Yes, this is a field. Some of the axioms are quite tedious
to check. It is perhaps worth noting that the multiplicative inverse of (a,b) is

a b
<a2 +2b27 a2 +2b2) '
2.1.12. Solution. Let b € F be a non-zero element with multiplicative
inverse b’. Suppose that the element a € F also has the properties of a mul-
tiplicative inverse of b. This means that ab = 1. If we multiply both sides of
this equation by &', we have

(ab)p = ¥/
a(bb') = b’
a(l) =¥
a="0.

This proves that a = b, so multiplicative inverses are unique.

2.2 - Solving Linear Systems Over Fields
Exercises

2.2.1. Answer. This system has the solution z =1,y =0, z = 0.

2.2.2. Answer. This linear system is inconsistent.

2.2.5. Answer. This system is inconsistent.

2.2.6. Answer. The unique solution is x =2, y =4, and z = 1.

Writing Exercises

2.2.9. Answer.

(a) The same argument as in Exercise 1.3.12 works here, recognizing that
2= —11in Fs.

(b) The correct inequality is ad 4+ (p — 1)bc # 0.
2.2.10. Answer.

(a) If all of the coefficients and constants begin as integers, all of the ele-
mentary row operations will produce coefficients and constants within Q.
None of the elementary row operations can produce an irrational number
when beginning with integers.
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(b) If there is a unique solution, there are no free variables, so whether one
considers the solution in Q™ or R", there cannot be another solution.
Thus, the numbers in the solution set must be rational numbers.

2.3 - Vector Spaces

Exercises
2.3.1. Answer.

(a) No, this is not a vector space. For example, it is not closed under scalar
multiplication. We can see that —2(1,1) = (=2,-2) € V.

(b) No, this is not a vector space. For example, it is not closed under addition.
We can see that (1,4) + (-2,-1) = (-1,3) ¢ V.
(¢) Yes, this is a vector space. All of the vector space axioms hold.

2.3.3. Answer. The only axiom that fails is axiom 7. We can see, for
example, that 1-(1,1) = (0,1) # (1,1), so this axiom does not hold.

2.3.4. Answer. We calculate that

2p1 — 3ps — 2ps = —5¢t3 + 6% — 18t + 10.
2.3.6. Answer.

(a) This vector space contains 23 = 8 distinct vectors.

(b) The set Span{u,v} contains four distinct vectors: 0, u, v, and u + v.
These are all distinct.

2.3.9. Answer. No, w is not in Span{u, v}. When we form the matrix with
u, v, and w as its columns, it reduces to the following:

1 00
010
0 01

Since there is a pivot in the final column, the corresponding vector equation
z1u + 22V = W has no solutions.

Writing Exercises

2.3.12. Answer. No, QQ is not a vector space over R. It is not closed under
scalar multiplication. For example, we see that m(1,1) = (7, 7) & Q2.

2.3.15. Solution. Suppose that 0 is a zero vector in V and that z also has
the properties of a zero vector. Since 0 is a zero vector, we have 0 + z = z.
Since z has the properties of a zero vector, we have 0 + z = 0. Therefore, we
have

z=04+z=0,

so z = 0. This proves that the zero vector is unique.

2.4 - Subspaces

Exercises
2.4.2. Answer.

(a) Yes, W is a subspace.
(b) Yes, W is a subspace.
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(¢) No, W is not a subspace. It is not closed under scalar multiplication.
(d) Yes, W is a subspace.

(e) Yes, W is a subspace.
2.4.4. Answer.

(a) Yes, W is a subspace as it can be written as the span of two vectors.

(b) No, W is not a subspace. It is not closed under scalar multiplication, for
example.

(¢) Yes, W is a subspace as it can be written as the span of four vectors.

(d) No, W is not a subspace as it does not contain the zero vector.

Writing Exercises

2.4.6. Answer. Let V denote the set of functions described in the statement
of the problem. We first observe that the zero function is in V' since it integrates
to zero over any interval [a,b]. If f,g € V| then

/ (f +9)(x) dr = / (f(z) + g(a)) da

b b
:/ f(x)da:—!—/ g(z) dr =04+0=0,

which proves that f + g € V. Finally, if c€ R and f € V, we have

/ab(Cf)(w)dx:/:cf(:c)dw:c/abf(x)dx:c.ozo’

which shows that ¢f € V. (These last two calculations rely on the linear prop-
erties of the definite integral.) This completes the proof that V is a subspace.

2.4.9. Answer. No. Let W; and W, be the following two subspaces of R?:
Wy ={(z,2z) |z € R}, Wi ={(z,32) |2z €R}.

Then (1,2) € Wy and (1,3) € Ws, so both of these elements are in Wy U Whs.
However, (1,2)4(1,3) = (2,5), and (2,5) ¢ W1 UW5. This shows that W, UW;
is not closed under addition, so it is not a subspace.

3 + Linear Transformations
3.1 - Linear Transformations
3.1.7 - Exercises

3.1.7.2. Answer. Yes, T is a linear transformation.

3.1.7.4. Answer. No, T is not a linear transformation. Consider the follow-
ing example:
T(2(1,1,0)) =T(2,2,0) = (6 +2—0,—4) = (3,1)
27(1,1,0) = 2(3+ 1 —0,—1) = 2(4,4) = (3,3).

This shows that the scalar multiplication property does not hold, as
27(1,1,0) # T(2(1,1,0)).
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3.1.7.6. Answer.
(a) Av=1(0,1,0)
(b) Av=(1,2,2)

(¢) Av=(0,1,0)
3.1.7.8. Answer.

(a) No, since

3 271 100
1 4 |1 ~(0 1 O
-1 0 |1 0 0 1

The pivot in the final column shows that there is no solution to the
matrix-vector equation Ax = v, where v = (1,1,1).

(b) No. Since in part a we identified a vector which is not in the image of T,
this means that T' cannot be surjective.

Writing Exercises

3.1.7.11. Answer. Let V = (C[0,00) and let f,g € V. Then we have
17+ 9)o) = [+ 9w du= [ () + ) dy
= /Ox fy) dy + / 9(y) dy = T(f)(x) + T(g)()-

0
We now let c € R and f € V. Then
T(cf)(z) = / “(ef)w) dy = / " ef(y) dy
e / " () dy = T (f) (@),

Both of these calculations rely on the linear properties of the definite integral.
3.1.7.12. Solution. Let u and v be vectors in U. Then, since S and T are

both linear transformations, we have

(SoT)(u+v) = S(T(u+v)) = S(T(w) + T(v))

= S(T () +S(T(v)) = (SoT)(u) + (S o T)(v).
This proves that S o T" has the first property of a linear transformation.
We now let ¢ € F and u € U. Then, since S and T are both linear transfor-
mations, we have
(S 0 T)(eu) = S(T(cw) = S(cT(w)
— eS(T(w)) = (S o T)(u).

This shows that S o T is a linear transformation.
3.1.7.13. Solution.

(a) We assume that S o T is injective, and we let u; and ug be vectors in U
with T'(u;) = T'(uz). Then, since S o T is injective, we have

S(T(w1)) = S(T(uy))
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u; = Ug.
This proves that T is injective.

(b) We assume that S o T is surjective, and we let w € W. Since S o T is
surjective, there is a vector u € U such that (S o T)(u) = w. But this
means that S(7'(u)) = w; in other words, S sends T'(u) to w. This proves
that S is surjective, since we have found a vector v = T'(u) € V such that
S(v) =w.

3.2 - The Matrix of a Linear Transformation
3.2.6 - Exercises

. . (1/2 1/2
3.2.6.3. Answer. The matrix for T is {1/2 1/2].

cosf —sin 0}

3.2.6.5. Answer. The matrix for T'is | .
sinf  cos6

Writing Exercises

3.2.6.8. Solution. Let A € M,(F) be invertible. This means that A~!
exists and that AA~! = A='A = I,. These equalities involving A and A~}
show that A~! is invertible and that A is a matrix which has the properties

of the inverse of A=1. Since the inverse of a matrix is unique, it must be that
(A H)~1 = A

3.3 * Inverting a Matrix
3.3.4 - Exercises
3.3.4.2. Answer.

(a) The RREF of A is I3 and it takes nine elementary row operations to
reduce A.

(b) The RREF of A is I3 and it takes six elementary row operations to reduce
A.
3.3.4.4. Answer.

(a) The matrix A is invertible and the inverse of A is
0 2 1
2 4 2
4 0 2

(b) The matrix A is not invertible since its RREF is
1 01
01 3
0 0 0

3.3.4.6. Answer. If A= {2 4}, then the inverse over Fy is A~! = {4 3}

1 3 2 1

b L= L)

Then we have
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Writing Exercises

3.3.4.9. Answer.

(a) We suppose that (B — C)D = 0 where D is invertible. Then we have

(B-C)D=0
(B-C)DD™' =0D!
B-C=0
B=C.

(b) Suppose that B = [1 3}, C = [1 1} and D = [1 1] Then, it is

1 2 1 0|’ 0 0|
true that D is not invertible. We obviously have B # C. But we do have
0 2
B-C= [O 2] and then

0 2||1 1 0 0
(B-C)D = {0 2] [o o] - {0 0]'

3.3.4.11. Answer. Suppose that A is invertible and upper triangular. Then
we can use elementary row operations to reduce [A ‘ I] to [I ‘ A‘l]. But the
elementary row operations that are needed for this reduction will be only the
scaling operation and the replacement operation, where we add a multiple of
one row to another higher up in the matrix. (Specifically, we will only need to
add a multiple of a row i to a row j where i > j.) The elementary matrices that
correspond to these specific elementary row operations are all upper triangular.
And since the product of upper triangular matrices is upper triangular (this
should probably be proved), this shows that A~! will be upper triangular.

3.4 - Subspaces and Linear Transformations
3.4.4 - Exercises
3.4.4.1. Answer.

(a) Yes, we calculate Ax = 0.

(b) No, we calculate Ax = (6,6,5), where we have written the vector hori-
zontally out of convenience.

3.4.4.4. Answer.

(a) It is easy to calculate Ax and see that Ax = 0. To show that x is not in
col(A), we form the matrix [A | x] and row reduce:

3 —1l2] [1 -1/3]0
-9 3 |6 0 0 1|
The pivot in the last column shows that x ¢ col(A).
(b) Since

o

we can see that any vector v in the null space of A must be a multiple
of x. And since x is not in col(A4), no non-zero multiple of x can be in
col(A). This shows that the only vector in null(A) N col(A) is the zero
vector.
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1 -1

(c¢) Yes, this is possible. Consider the matrix A = [1 1

]. The vector

vV = E] is in the null space of A. (This can easily be checked.) Also,

since v is a column of A, it is in col(A).
3.4.4.7. Solution.
(a) This linear transformation is injective. Observe that if T' sends the vector

(a,b,c) to the zero polynomial, then we have the following linear system
in which each equation must hold:

a+b=0
b+c=0
at+b+c=0.

We can solve this using methods from earlier in this book. We find that

1
0
1

—_ = =
= O

1
~ 10
0

O = O
= o O

This shows that the only solution to this linear system is the trivial one—
that is, where a = b = ¢ = 0. But this means that the only vector that
T sends to the zero polynomial is the zero vector.

This proves that the kernel of T contains only the zero vector, so T is
injective.

(b) We claim that T is surjective. Let p = d+et+ ft? be an arbitrary element
of Py. In order to demonstrate that there is an element x € R3 such that
T'(x) = p, we need to solve the following linear system:

a+b=d
b+c=e
a+b+c=f.
However, the RREF of the coefficient matrix for this system looks like
this:
1 10 1 00
0 1 1| ~1{0 1 0
1 1 1 0 0 1

The fact that there is a pivot in each row of this RREF means that a
combination of a, b, and ¢ can be found such that 7'(x) = p. This proves
that T is surjective.

3.4.4.9. Solution.

(a) This linear transformation is not injective. We can calculate that T'(—2 —
%t +t2) = 0. Since this shows that T has a nonzero vector in the kernel,
T is not injective.

- L - d
(b) This linear transformation is surjective. Let x = [e} be an element of

R?. We claim that we can find an element p € P such that T'(p) = x. If
p = a+ bt + ct?, we will need to solve the following system of equations
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to find the coefficients of p:

a—2b=d
3b+c=c¢e.

But the coefficient matrix of this system has the following RREF":

1 -2 0 1 0 2/3

0 3 1 0 1 1/3|°
The important thing to notice here is that there is a pivot in each row of
this RREF. This means that the linear system always has a solution, so

we can always find values of a, b, and ¢ such that T(p) = x. This proves
that T is surjective.

Writing Exercises

3.4.4.11. Solution. Since U’ is a subspace of U, we must have 0 € U’.
Further, we know that 7'(0) = 0 for all linear transformations. This proves
that 0 € T(U").

We now let vi,ve € T(U’). This means that there exist uj,up € U’ with
T(uy) = vy and T(uy) = vy. Since U’ is a subspace of U, we know that
u; +ug € U'; so T(u; +uz) € T(U'). However, because of the properties of a
linear transformation, we have

T(lll + 112) = T(ul) + T(llg) = vy + Va.

This proves that vi + vo € T(U’), which shows that T(U’) is closed under
addition.

Finally, we let v € T(U’) and ¢ € F. This means that there exists u € U’
such that T'(u) = v. Since U’ is a subspace of U, we know that cu € U’, so
T(cu) € T(U'). Using the properties of a linear transformation, we see that

T(cu) = cT'(u) = cv.

This proves that cv € T(U’), showing that T'(U’) is closed under scalar multi-
plication. This completes the proof that T'(U’) is a subspace of V.

4 - Determinants
4.1 + Defining the Determinant

4.1.4 - Exercises
4.1.4.2. Answer.

(a) 6

(b) 66
4.1.4.4. Answer.

(a) The elementary matrix is

1 0 0
E=10 -3 0,
0 0 1

and det(E) = —3.
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(b) The elementary matrix is

and det(E) = —1.

(c) The elementary matrix is

and det(E) = 1.

ka kb

4.1.4.6. Solution. We note that kA = {kc kd

], and

det(kA) = kakd — kbkc = k*ad — k*bc = k*(ad — bc) = k* det(A).
4.1.4.8. Answer. We must have c = —22 in order to have det(A) = 0.
4.1.4.9. Answer. The values are x =1 and z = 6.

Writing Exercises

4.1.4.12. Answer. We let A = (CI Z] , and we consider the case of adding

k times row 1 to row 2. We will call the resulting matrix B, and it has this
appearance:

a b
b= {kmc k;b+d] :
We know that det(A4) = ad — be, and we will now calculate det(B):
det(B) = a(kb+d) — b(ka + ¢)
= kab+ ad — kab — be
= ad — bec = det(A).

Technically we have only proved one of the two necessary cases to complete
this proof.

4.2 - Properties of the Determinant
4.2.4 - Exercises
4.2.4.2. Answer.

(a) —12

(b) =3
4.2.4.4. Answer. —10
4.2.4.6. Answer. 27

Writing Exercises

4.2.4.8. Solution. If A has identical columns, then A7 has identical rows.
We can use an elementary row operation to add —1 times one of these rows
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to the other, producing a row of zeros in this matrix we will call B. Since we
used the replace row operation to go from A7 to B, we have det(A”) = det(B)
by Theorem 4.2.5. Since B has a row of zeros, we know that det(B) = 0 by
Proposition 4.2.1. This means that det(A7) = 0, and since we have det(A) =
det(AT) by Theorem 4.1.9, this means that det(A4) = 0, as desired.

4.2.4.11. Solution. If A, B € M, (F), we have
det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

This string of equations uses Theorem 4.2.13 twice as well as the fact that the
determinant of a matrix is an element of F, and elements of F commute via
multiplication.

5 - The Dimension of a Vector Space
5.1 - Linear Independence

Exercises
5.1.3. Answer. The set is linearly dependent if and only if ¢ = 20.
5.1.4. Answer. 4
5.1.5. Answer.
False.

b

(a
(b) False.

)
)
(c) False.
(d) True.

Writing Exercises

5.1.9. Solution. Suppose that
Vi={vi,...,vi}
and
‘/2 = {Vla"'avkvvk+1;"'7vn}'

Since V; is linearly dependent, we know that there exist scalars ¢y, ..., cg, not
all of which are zero, such that

civi+ -+ v =0.
Then it is easy to produce a linear dependence relation for the set Vs:
v+ +cepvg +0vgyer + -+ 0vyy, = 0.

This proves that V5 is linearly dependent.
5.1.10. Solution.

(a) If A € M, (F), then null(4) = {0} if and only if the RREF of A is I,,.
It is always true that the null space is {0} if and only if and we have a
pivot in each column of the RREF; when A is square, this means that
the RREF must be I,,.

We also know that col(A) = F™ if and only if the RREF of A is [,,. It
is always true that the column space is F” if and only if and we have a
pivot in each row of the RREF; when A is square, this means that the
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RREF must be I,,.

Putting these two paragraphs together, we conclude that null(A) = {0}
if and only if col(A) = F".

(b) If T is a linear transformation F* — F™, then by Theorem 3.2.2 there
is a matrix B € M, (FF) such that T is multiplication by B. Then the
kernel of T' is the null space of B and the range of T is the column space
of B. So, T is injective if and only if null(B) = {0}, and T is surjective
if and only if col(B) = F". Then the result from part a completes the
argument.

5.2 - Basis of a Vector Space
5.2.4 - Exercises
5.2.4.2. Answer.

(a) No.
(b) No.
(¢) No.

5.2.4.4. Answer. Any matrix that has two pivot columns and two non-pivot
columns will work as an answer here. This is one of many such matrices:

1 2 0 3
0 01 3
0 0 0O

Of course, any matrix row equivalent to a matrix like this one would also work
as an answer.

5.2.4.6. Answer. A basis is {vy,va,v3}.

5.2.4.7. Answer. We will argue using the (contrapositive of the) Linear
Dependence Lemma. Since sin(t) is not the zero function, then {sin(¢)}
is a linearly independent set. Also, since sin(2t) is not a scalar multiple
of sin(¢) (this can be verified by comparing graphs of the two functions),
the set {sin(t),sin(2t)} is also linearly independent. However, there is a
trig identity which says that sin(2t) = 2sin(¢) cos(¢), meaning that the set
{sin(t), sin(2t), sin(¢) cos(t)} is linearly dependent (as one vector is a multiple
of another within this set). Therefore, one basis for H is {sin(t),sin(2t)}.

Writing Exercises

5.2.4.12. Solution. Welet B = {vi +vo,vo +V3,..., V1 + V,, v, }. We
will first show that B is linearly independent.
We first suppose that ¢q, ..., ¢, are scalars such that

ca(vi+ve)+ -+ en—1(Vpo1 + Vi) + cuv, = 0.
Rearranging this equation, we see that it is equivalent to
cavi+ (c1 +ea)va+ -+ (et + cp)vy, = 0.

However, since we were given that B’ = {vy,...,v,} is a basis for V, this
means that the coefficients in this last equation must all be zero, since B’ is
linearly independent. This means that ¢; = 0, and then since we must also
have ¢; 4+ ¢o = 0, we have c; = 0, and so on. The result is that ¢; = 0 for all 7,
i =1,...,n. This proves that B is linearly independent.
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We will now show that B spans V. Let v € V. We want to argue that v
can be written as a linear combination of the vectors in B. Since B’ is a basis

for V, there exist scalars di,...,d, such that
v=divi + -+ d,Vn. (B.1)
We want to argue that we can always find scalars ¢y, ..., ¢, such that

v=ci(vi+ve)+ -+ cpvp.
This equation can be rewritten as
v=c1vi+ (c1 +c2)va+ -+ (cn1 + cn)Vn, (B.2)

and by The Unique Representation Theorem (Theorem 5.2.11), we know that
the coefficients on the right sides of (B.1) and (B.2) must be equal. Immediately
we see that ¢; = d; and then since we must have ¢; +co = ds, we conclude ¢, =
ds — d;. We can continue on in this way, eventually producing an expression
for each ¢; in terms of the d; coefficients.

This proves that B spans V which concludes the proof that B is a basis of
V.

5.3 - Dimension

5.3.4 - Exercises

5.3.4.1. Answer. The dimension is 2.
5.3.4.4. Answer.

(a) This is true by Lemma 5.3.1.
(b) This is false, as R? is not even a subset of R?.

(c) This is false. The vector space R? is a counter-example, as we know that
dim(R?) = 2 but it is spanned by an infinite set (the entire vector space).

5.3.4.6. Answer. Since dim(P;) = 4 and this is a set of four polynomials, we
only need to argue that this set is linearly independent (see Theorem 5.3.17). If
we label the polynomials as p; = 1, po = 2t, p3 = —2+4t2, and py = —12t+8t3,
then we can argue that the set {p1,p2,ps,ps} is linearly independent by the
contrapositive of the Linear Dependence Lemma. The set containing only p; is
linearly independent since p; # 0. Then the set {p1,p2} is linearly independent
since neither polynomial is a scalar multiple of the other. Then since p3 cannot
be a linear combination of p; and py for degree reasons, {p1,p2, ps} is linearly
independent. Similarly, since py cannot be a linear combination of py, ps, and
ps for degree reasons, {p1, p2, p3, p4} is linearly independent.

Writing Exercises

5.3.4.8. Answer.

(a) The null space of a matrix has a basis vector for each column in the
RREF which does not contain a pivot. Therefore, the dimension of the
null space is the number of non-pivot columns.

(b) By Algorithm 5.2.14, we see that there is a vector in the basis for col(A)
for each pivot in the RREF of A. Therefore, dim(col(A)) is the number
of pivot columns of A.
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5.3.4.9. Answer. Since V contains the vector space of all polynomials, and
since the vector space of all polynomials is infinite-dimensional (see Exam-
ple 5.3.3), then V must be infinite-dimensional.

5.4 - Rank and Nullity

5.4.4 - Exercises

5.4.4.4. Answer. This is not possible. A 9 x 10 linear system has a 9 x 10
coefficient matrix which we will call A. This situation can be reinterpreted
as a linear transformation from F'© — F? which is multiplication by A. The
information given in the problem tells us that this transformation is surjective,
meaning that the rank of A is as large as possible, which is 9 in this case.
Therefore, the Rank-Nullity Theorem says that dim(null(A4)) = 1. This means
that every nonzero vector in the null space of A is a scalar multiple of a single
basis vector. Therefore, the associated homogeneous linear system only has
nonzero solutions which are multiples of each other.

Writing Exercises

5.4.4.7. Answer.

(a) If T is surjective, then range(7T") = W, which means that dim(range(7")) =
dim(W). This implies that rank(7T) = dim(W). On the other hand, if
rank(7) = dim(W), then dim(range(7")) = dim(W). Since range(T) is a
subspace of W, Theorem 5.3.18 implies that range(T") = W, which means
that T is surjective.

(b) We will be able to argue both implications at once. A linear transfor-
mation T is injective if and only if ker(7) = {0}. This occurs if and
only if dim(ker(T)) = 0. The Rank-Nullity Theorem then says that
dim(ker(T)) = 0 if and only if rank(T) = dim(V). This proves the
result.

5.4.4.8. Answer. The given information means there is no pivot in the last
column of the augmented matrix but that there is at least one non-pivot column
among the first six columns. The coefficient matrix A then has at least one
non-pivot column, meaning that rank(A) < 5. But this means that the linear
transformation 7 : FS — F® which is multiplication by A cannot be surjective,
since the rank of A is less than six. Therefore, we can find a vector ¢ € FS such
that Ax = c¢ is inconsistent.

5.4.4.10. Answer. We know that rank(A) is the number of pivots in the
RREF of A, but the number of pivots must be less than both the number of
columns (n) and the number of rows (m) of A. Then if rank(A) < m and
rank(A) < n, we have rank(A4) < min{m,n}.

5.5 - Coordinates
5.5.4 - Exercises
5.5.4.1. Answer.

@ v=[4]

(b) v = [_129}

5.5.4.3. Answer.
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-2

(a) [v]s = | 2
-1
(1

(b) [Vls= |0
4

5.5.4.6. Answer.
(a) This set of vectors spans Ps.

(b) This set of vectors does not span Ps.
5.5.4.7. Answer.

@ Wee=[p 1 Y]

(b) T(—10+ 3t*) = [T]p.e[pls = {__197]

Writing Exercises

5.5.4.13. Solution. Let V be an n-dimensional vector space over F, and let
B = {vla"'vvn}

be a basis for V. Let Cz : V — F" be the coordinate mapping. We will prove
that Cj is injective by showing that it has a trivial kernel.

Suppose that v € ker(Cg). This means that Cg(v) = 0 € F”, so [v]g = 0.
Since this is the coordinate vector of v, this tells us that

v=0vi+ -+ 0v,.

This proves that v = 0 € V, and therefore ker(Cg) = {0}. This proves that
the coordinate mapping is injective.

5.6 - Change of Basis
5.6.3 - Exercises
5.6.3.1. Answer. Here are the change-of-basis matrices:

o= [P 2], i o= [t 0]

5.6.3.3. Answer.

(a) Here are the change-of-basis matrices:

1 0 1 0
PB,£|:2 2:|, and P575|:2 2:|.

(Yes, they are the same!)
(b) We find that
1
vls = Pealvle = 1]
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5.6.3.6. Answer.

(a) We will use the basis B = {vq, vz}, where

vy = [_41} , and vy = Lﬂ .

o) ma =y Y
(c) We find that

4 1 417 117
FPo.e = {—1 4}’ and FPes = {1/17 4/17]'

15/17  —8/17
(d) [T]e = {—8//17 —15//17}

Writing Exercises

5.6.3.8. Solution. The ith column of Pg¢ is [v;]¢. Or, stated differently, if
C¢ : V — F™ is the coordinate mapping, then the ith column of Pg ¢ is Ce(v;).

We know (by Theorem 5.5.3) that the coordinate mapping is an isomor-
phism. Since B is a basis for V', B is a spanning set for V. But then the set
containing the columns of P ¢ is C¢(B), and since B spans V' we know that
C¢(B) will span F™.

6 - Eigenvalues and Eigenvectors
6.1 - Eigenvalues and Eigenvectors
6.1.4 - Exercises

6.1.4.3. Answer.

(a) The RREF of A+41I has one non-pivot column, so A = —4 is an eigenvalue
for A. A basis for eig_,(A) is

(b) The RREF of A—2TI has two non-pivot columns, so A = 2 is an eigenvalue
for A. A Dbasis for eig,(A) is

2] [1
L,
0] |1

6.1.4.5. Answer.

(a) The RREF of A—41I has two non-pivot columns, so A = 4 is an eigenvalue
for A. A basis for eig,(A) is

1] [3
1], |o
ol |1

(b) The RREF of A— 2T has one non-pivot column, so A = 2 is an eigenvalue
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for A. A Dbasis for eig,(A) is

0
4
1

6.1.4.9. Answer. Since A is clearly not invertible—its columns are linearly
dependent—it has 0 as an eigenvalue by Theorem 6.1.12. A basis for eig,(A)
is

(—17 [=1] (1
1 0 0
0 1 :
0 o
0 : 0

o] [o] 1]

The dimension of eigy(A) is n — 1.
The other eigenvalue is A = n, and a basis for eig, (A) is

1

Writing Exercises

6.1.4.10. Solution. Suppose that A is an eigenvalue of A. Then there exists
a nonzero vector v such that Av = Av. But then

A%y = A(\v) = X - Av = \?v.

If A2 =0, then A%v = 0, so we have A\?>v = 0. But since v is nonzero, and since
F is a field, we must have A = 0. Therefore, the only eigenvalue of A is 0.
6.1.4.11. Solution. We will argue by contradiction. Suppose that an n x n
matrix A has n + 1 distinct eigenvalues. This means that there are corre-
sponding eigenvectors vi,...,V,41. By Theorem 6.1.13, we know that the set
S ={vy,...,Vpt1} is linearly independent. However, this gives us a linearly in-
dependent set of n+1 vectors in F”, which is a contradiction by Corollary 5.1.13.
This proves that A can have at most n distinct eigenvalues.

6.2 - The Characteristic Equation

6.2.4 - Exercises

6.2.4.2. Answer. The characteristic polynomial is p4(A\) = A2 —5\+4. The
eigenvalues are A =1 and A\ = 4.

6.2.4.4. Answer. The characteristic polynomial is p4(A\) = A2 + X\ + 3, and
the eigenvalues are A =1 and A = 3.

6.2.4.6. Answer. The characteristic polynomial is pa()\) = =A% —6A2 -9\ —
4, but it is easier in this problem NOT to expand the calculation to this form.
The characteristic polynomial as calculated is pa(\) = (=1 — A)(A2 + 5\ + 4).
The eigenvalues are A = —4 and A = —1.

6.2.4.8. Answer. The characteristic polynomial is p4(A\) = —A3 + 9\% —
23\ 4+ 15. The eigenvalues are A =1, A =3, and A = 5.
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Writing Exercises

6.2.4.10. Solution. For the purposes of notation, we will say that A ~ B if
A is similar to B. We first note that a matrix A € M,,(F) is similar to itself
since A = IPI~!, where I is the n x n identity matrix. This proves that the
relation is reflexive.

We now suppose that A, B € M, (F) with A ~ B. This means that there
is an invertible matrix P such that A = PBP~!. We can manipulate this
equation to give B = P~ AP, and since P~ is invertible (and since (P~1)~1
P), this proves that B ~ A. This proves that the relation is symmetric.

We now suppose that A, B,C € M,(F) with A ~ B and B ~ C. This
means that we have invertible matrices P and @ such that A = PBP~! and
B = QCQ~'. Putting these equations together, we have

A=PQCQHP! = (PQICQ™'P™Y) = (PQ)C(PQ)™".

In this derivation we have used Proposition 3.2.13. Since P(Q is invertible
(again by Proposition 3.2.13), this proves that A ~ C, which shows that the
relation is transitive.

We have shown that the relation of similarity on the set M, (F) is reflexive,
symmetric, and transitive, so it is an equivalence relation.

6.3 - Diagonalization

6.3.5 - Exercises

6.3.5.3. Answer. This matrix is not diagonalizable. There is only one
eigenvalue, and the dimension of the eigenspace is one.

6.3.5.5. Answer. This matrix is diagonalizable using the following matrices
P and D:

—1 -2 -2 -1 0 0
P=|1 0 -1/, D=|0 -1 0
0 1 1 0 0 -5

6.3.5.6. Answer. No, that is not possible. The matrix A must be diago-
nalizable. The dimension of the eigenspace that is not yet specified must be
at least one. The sum of all dimensions of the eigenspaces must be at most
four (since A is 4 x 4), and the given information tells us that this sum will be
exactly four. This means that A is diagonalizable.

6.3.5.7. Answer. Here is one pair of matrices that diagonalizes A:
1 -1 2 0
s 2] o)
We can make subtle manipulations to these matrices to find another pair which
diagonalizes A:
-1 1 6 0
S

There are many, many other pairs of matrices that diagonalize A, mainly be-
cause the matrix P can have infinitely many different columns.

Writing Exercises

6.3.5.9. Solution. If A has n linearly independent eigenvectors, then it is
diagonalizable by Theorem 6.3.2. This means there exist matrices P and D
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such that A = PDP~!. If we take the transpose of both sides of this equation,
we get
AT = (pDPHT = (P~H)TDTPT.

Since D is diagonal, DT = D. Also, Exercise 3.2.6.6 tells us that (P~1)7 =
(PT)~1. So, we have

AT = (P"Yy~'DpPT.
This proves that A7 is diagonalizable, and Theorem 6.3.2 allows us to conclude
that AT has n linearly independent eigenvectors.

6.4 - Invariar}ts
6.4.4 - Exercises
6.4.4.2. Answer.

(a) Since rank(A) = rank(B) = 3 and tr(A) = tr(B) = 2, neither the rank
nor the trace can tell us whether or not A and B are similar matrices.

(b) We can calculate that det(A) = —2 while det(B) = —12, so this means
that A and B are not similar.
6.4.4.3. Answer.

(a) We find that tr(A) = tr(B) = 3, rank(A) = rank(B) = 2, and det(A) =
det(B) = 0, so the trace, rank, and determinant do not give us enough
information to determine whether or not A and B are similar.

(b) Some calculation shows that the eigenvalues for A are A = 0, —1,4, while
the eigenvalues for B are A = 0,1,2. Since these are different (and
therefore the characteristic polynomials are different), we see that A and
B are not similar.

6.4.4.6. Answer.

(a) We find that rank(A) = rank(B) = 3, tr(A) = tr(B) = 5, and det(A) =
det(B) = 4. Further, the eigenvalues for both A and B are A = 1,2, 2.
These four invariants do not provide enough information to determine
whether or not A and B are similar.

(b) We can show that A is not diagonalizable but B is. Since diagonalizability
is an invariant for similarity, this proves that A and B are not similar.

Writing Exercises

6.4.4.14. Answer. No, trace is not an invariant for row equivalence. Con-
sider the following matrix A € My(R):

AE ﬂ

The matrix A is invertible, so it is row equivalent to Io. However, tr(A) = 3
and tr(I3) = 2. This proves that trace is not an invariant for row equivalence.

6.4.4.17. Answer. Yes, invertibility is an invariant for similarity. This
argument relies on the fact that the determinant is an invariant for similarity.
We will denote the similarity relation by A ~ B. Suppose that A ~ B and
that A is invertible. This means that det(A) # 0, and since A ~ B, this means
that det(B) # 0 also. But the fact that det(B) # 0 means that B is invertible.
We now suppose that A ~ B and that A is not invertible. This means that
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det(A) = 0, and since A ~ B, this means that det(B) = 0. But det(B) =0
means that B is not invertible.
This proves that invertibility is an invariant for similarity.

7 - Inner Products
7.1 - Inner Products
7.1.6 - Exercises

7.1.6.2. Answer. Calculation shows that the set {vq, v, vs} is orthogonal,
so then it is linearly independent.

7.1.6.3. Answer.

(a) We let u and v be the following vectors:

o= [ wav=[ ]

Then it is easy to see that u-v =0, but (u,v) =4.

(b) We let u and v be the following vectors:

u:H, andv:{_lﬂ.

Then it is easy to see that (u,v) =0, but u-v = —4.

L 1] . Tt is fairly easy to see that det(A) = 0,

7.1.6.6. Answer. Let A = {2 9

so we have

(A,A) =0-0=0.

However, since A is not the zero matrix (i.e., the zero vector for the vector
space M3(R)), the fourth axiom of the inner product does not hold for this
function.

Writing Exercises

7.1.6.8. Solution. This function is not an inner product. Consider the

1} . We have

vector u = [0

(1) = (1)(0) + (0)(1) = 0.

However, since u is not the zero vector in R?, the fourth axiom of the inner
product does not hold.

7.1.6.12. Solution. We will show that all four of the inner product axioms
hold. For the first axiom, we note that everything here is real-valued, so we
do not need to worry about any complex conjugates. Since the order of the
functions within a definite integral can be switched, we have

1
(9. f) = / o(2) () dx
- / f(@)g(x) dz = (f.g).

This shows that the first axiom holds.
For the second axiom, we let f,g,h € C([0,1]). The definite integral is
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linear with respect to the sum of functions, so we have
1
(F+9:) = [ (70 + gla)h(o) do
0
1
- / (f(2)h(z) + g(2)h(x)) d

/ fa d:c—i—/l (2)h(z) dz

h) + (g, h) .

This proves that the second axiom holds.
Let f,g € C([0,1]) and let ¢ € R. The definite integral is linear with respect
to scalar multiplication by a real number, so we have

1
(cfrg) = / (e (2))g(z) da
¢ / f(@)g(z) da
0
(f.9).

This proves that the third axiom holds.

Let f € C([0,1]). We observe that f(z)? is a function with values that are
always non-negative (since each value of this function is a real number squared).
Since the definite integral can be interpreted as calculating signed area between
the graph of a function and the z-axis, we know that

:/1f(x)2 dr > 0.
0

Finally, using this same signed area interpretation of the definite integral, the
only way a non-negative function could produce a zero value for the definite
integral is if the function was uniformly the zero function. This means that if
(f, f) = 0, we must have f(z)? = 0 and therefore f(z) = 0. This proves that
the fourth axiom holds.

7.2 -+ Orthonormal Bases
7.2.5 - Exercises
7.2.5.2. Answer.

(a) The orthonormal basis we obtain is

1 1
{\/ﬁ(2+t),m(3— n)}.

(b) The coordinate vector is
10//17
—2//34|"

7.2.5.3. Answer. The orthonormal basis we obtain is

1/v2] [i/V6 —14 4
iIV2| .| 1/V6 ,\/3 3+§

0 2i/v6| 2V2 | UL



APPENDIX B. HINTS, ANSWERS, AND SOLUTIONS TO EXERCISES218

7.3 + Orthogonal Projections
7.3.5 + Exercises
7.3.5.1. Answer. If we let w and w’ be the following vectors,

_ [35/34 ,_ [-69/34
- [21/34} , ond W= [115/34} ’

then v=w+w where w e L and w’ € L+.
7.3.5.2. Answer.

(a) Our matrix is

1 _3 1

11 11 11

; — |3 101 3
[projyle = 11 110 110
1 3 109

11 110 110

(b) The vector in U which is closest to v is

7.3.5.3. Answer. Let g and ¢’ be the following polynomials:

ng—gt—i—%ta and

0~ 20
r_ 9 3, _ 2142

9 =1~ 20 20

Then p = ¢+ ¢, where ¢ € U and ¢/ € U™+,

Writing Exercises

7.3.5.5. Solution. First, we know that (0,u) = 0 for all u € U by Proposi-
tion 7.1.17. This proves that 0 € U+.

Next, we let wi,wo € UL and u € U. Then, by the properties of the inner
product, we have

(w1 4+ wo,u) = (wy,u) + (wo,u) =0+ 0 =0.

This shows that w; + wy € UL, meaning that U is closed under addition.
Finally, we let w € UL and ¢ € F. (Here, F is either R or C.) We also let
u € U. Then, by the properties of the inner product, we have

{ew,u) = c(w,u) =¢-0=0.

This proves that ecw € U+ so that U+ is closed under scalar multiplication.
Since U~ contains the zero vector and is closed under addition and scalar
multiplication, UL is a subspace of V.
7.3.5.6. Solution. We will prove that each of these sets is a subset of the
other. First, we let x € null(A), so that Ax = 0. The fact that Ax = 0 means
that r - x = 0 for all rows r of A. (Entry ¢ in Ax is the dot product of the ith
row of A with x.) Since the rows of A span row(A), the fact that r-x = 0
for each row r of A means that x-v = 0 for all v € row(A). This proves that
x € (row(A))L, so null(A) C (row(A))*.
We now let x € (row(A))*. We want to show that x € null(A). Since
x € (row(A))*t, we know that x - r = 0 for each row r of A. This shows that
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Ax = 0, which proves that x € null(A). Therefore, (row(A))+ C null(A).
Since we have shown that null(4) C (row(A))* and (row(A))* C null(A),
we can conclude that (row(A4))* = null(A), as desired.
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